Supplementary materials:

Hollow sphere structured Co₃V₂O₈ as a half-conversion anode

material with ultra-high pseudocapacitance effect for potassium ion

batteries

Fei Chen, Shuo Wang, Yi-Xuan Li, Kuo Cao, Chun-Hua Chen *

CAS Key Laboratory of Materials for Energy Conversions, Department of Materials

Science and Engineering& Collaborative Innovation Center of Suzhou Nano Science

and Technology, University of Science and Technology of China, Anhui Hefei 230026,

China

*Address correspondence to <u>cchchen@ustc.edu.cn</u>

Fig S1. TG curve of Co-V-precursor measured in air. Stage I: loss of adsorbed water; Stage II: carbonization of organic components; Stage III: combustion of carbon.

Fig S2. XRD patterns of HS-Co₃V₂O₈ calcined at 400°C and 600°C.

Fig S3. SEM and TEM images of Co-precursor (a-b) and Co-V-precursor (c-d).

Fig S4. TEM images of Co-precursor reflux for different time under water etching without the addition of NH_4VO_3 .

Fig S5. TEM image of $HS-Co_3V_2O_8-400$.

Fig S6. Nitrogen adsorption-desorption isotherms (a) and the pore size distributions (b) of HS-Co₃V₂O₈ and B-Co₃V₂O₈.

Fig S7. SEM images of HS-Co₃V₂O₈ electrode before (a) and after (b) 100 cycles (current density: 100 mA g⁻¹); B-Co₃V₂O₈ before (c) and after (d) 50 cycles (current density: 100 mA g⁻¹); XRD patterns of HS-Co₃V₂O₈ and B-Co₃V₂O₈ electrode after 50 cycles (e).

Fig S8. (a) EIS spectra of $HS-Co_3V_2O_8$ and $B-Co_3V_2O_8$ samples; (b) the equivalent circuit used for the experimental impedance data.

sample		Rs (Ω)	$\operatorname{Rct}(\Omega)$
B-Co ₃ V ₂ O ₈	pristine	6.314	417.4
	50th cycle	8.092	953.3
HS-Co ₃ V ₂ O ₈	pristine	8.264	347.4
	100th cycle	7.238	626.9

Table S1. The fitted impedances of HS-Co₃V₂O₈ and B-Co₃V₂O₈.

Fig S9. relevant intensity profiles for the line scans across the lattice fringes of Fig. 5b: "Co-2" region in Fig. 5b (a); "Co-3" region in Fig. 5b (b); "Co-4" region in Fig. 5b (c); "Co-5" region in Fig. 5b (d); "CoO-1" region in Fig. 5b (e); "CoO-2" region in Fig. 5b (f).

Fig S10. Analyses of Co_3O_4 electrode: XRD patterns of Co_3O_4 (a); Cycle performance at 100 mAh g⁻¹ (b); SEM images of Co_3O_4 (c and d); CV curves of Co_3O_4 electrode at different scan rates (e); The *b* values of charge and discharge peak of Co_3O_4 (f); The contribution percentages from capacitive and diffusion effect of Co_3O_4 electrode at 0.6 mV s⁻¹ (g) and other scan rates (h).

In order to verify the advantages of binary metal oxides, we obtained Co_3O_4 by sintering Co-precursor directly in air for 2h. Fig. S10a indicates that the powder belongs to the Fd-3m space group and has good crystallinity. Fig. S10c and S10d exhibit SEM images under different magnifications. It can be seen that (Fig. S10c) some spheres have been broken under high temperature treatment. And the enlarged image (Fig. S10d) shows that the pore distribution on the nano-spheres surface is less than HS-Co₃V₂O₈, which may affect the specific surface area of the material. Afterwards, we performed electrochemical analysis on Co₃O₄. The initial charge capacity at 100 mA g⁻¹ can reach 411 mA h g⁻¹, but only 99.9 mA h g⁻¹ remains after 100 cycles, with a capacity retention rate of 24.3% (Fig. S10b). The poor cycle stability can be attributed to the fragmentation of particles caused by the huge volume change during cycling. Meanwhile, the contribution of pseudocapacitive adsorption to the charging and discharging process is calculated through the CV curves at different scan rates. The contribution ranges from 10.26% at 0.1 to 25.59% at 1.0 mV s⁻¹, which is at a relatively low level. The difference between Co₃O₄ and HS-Co₃V₂O₈ in pseudocapacitive adsorption may be due to the difference in porosity.

Fig S11. The CV curve of HS- $Co_2V_3O_8$ electrode at 0.1 mV s⁻¹.

Fig S12. Electrochemical analyses of B-Co₃V₂O₈ electrode: CV curves of B-Co₃V₂O₈ electrode at different scan rates (a); The *b* values of charge and discharge peak of B-Co₃V₂O₈ (b); The contribution percentages from capacitive and diffusion effect of B-Co₃V₂O₈ electrode at 0.6 mV s⁻¹ (c) and other scan rates (d).

Materials	Current: mA g ⁻¹	Capacity: mA h g ⁻¹	Cycle number/Capacity Retention	Ref.
HS-Co ₃ V ₂ O ₈	20, 50, 100, 200, 400	409, 379, 333, 291, 267	100 / 82.0%	This work
SNF-VS ₂	25, 50, 100, 200, 500	382, 281, 244, 167, 105	500 / 93.3%	28

Table S2. Comparison of recent reported conversion anode materials for PIBs.

$Zn_3V_3O_8$	50, 100, 200, 500, 1000	286, 136.9, 87.1, 57.6, 43.6	100 / 41.8%	20
(NH ₄) ₂ Mo ₃ S ₁₃	100, 200, 500,1000	302, 230, 150, 80	100 / 33.9%	29
Yolk-shell structured CoSe2/C	50, 100, 200, 300, 500, 800, 1000	362.4, 261.1, 247.3, 239, 206.7, 197, 186.4	200 / 63.6%	30
MoSe ₂ /N-C	100, 200, 500, 1000, 2000	300, 244, 211, 195, 178	300 / 92.7%	31
FeVO ₄	100, 200, 300, 500, 1000, 2000	300, 280, 260, 240, 220, 190	2000 / 97.2%	24