Electronic Supplementary Information

Flexible, Robust, and Washable Bacterial Cellulose/Silver Nanowire

Conductive Paper for High-Performance Electromagnetic

Interference Shielding Effectiveness

Jie Wang ^{1,#}, Xiangbo Zhu ^{1,#}, Peixun Xiong ², Junpin Tu ¹, Zhiwei Yang ¹, Fanglian Yao ³, Miguel Gama ⁴, Quanchao Zhang ^{1*}, Honglin Luo ^{1,2,*}, Yizao Wan ^{1,2,*}

¹ Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China.

² School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.

³ Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

⁴Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, P 4715-057 Braga, Portugal.

[#] J. Wang and X. Zhu contributed equally to this work.

*Corresponding authors.

E-mail: zhangquanchao2006@126.com; hlluotju@126.com; yzwantju@126.com

TG analysis was performed to determine the weight ratio of AgNW in the asprepared BC/AgNW papers. The content of AgNW in BC/AgNW paper was calculated according to the TGA data using the following equation ^[S1]:

$$W_{AgNW} = \frac{W_b - W_a}{1 - W_a} \times 100\%$$

where W_{AgNW} is the weight ratio of AgNW in BC/AgNW, and W_a and W_b are the residual weight ratios of BC and BC/AgNW after thermal degradation, respectively.

Figure S1. SEM images of the (a) BC/AgNW-1, (b) BC/AgNW-2, and (c) BC/AgNW-

3 aerogels; SEM images of the (d) BC/AgNW-1, (e) BC/AgNW-2, and (f) BC/AgNW-3

papers.

Figure S2. (a) SEM image of the BC/AgNW-4 paper and a corresponding EDX mapping of AgNWs.

Figure S3. XPS survey spectrum of the BC/AgNW-4 paper.

Figure S4. High-resolution XPS spectrum of O1s of the BC and BC/AgNW-4 papers.

Figure S5. Water contact angles of the bare BC and BC/AgNW papers.

Figure S6. The brightness of the LED lamps does not change when the BC/AgNW-4 paper experienced tensile, bending, and twisting.

Figure S7. Strain at break of the BC/AgNW-4 paper after washing with water.

Movies:

Movie S1: Variation in electrical resistance of the BC/AgNW-4 paper under bending state for many times.

Movie S2: Variation in electrical resistance of the BC/AgNW-4 paper under folding state for many times.

Movie S3: Variation in electrical resistance of the BC/AgNW-4 paper after exposure to water, brine, ethanol, and vegetable oil.

Movie S4: The washing experiment for the BC/AgNW-4 paper with a stirring speed of 200 rpm.

Materials	AgNW content (wt.%)	Conductivity (S m ⁻¹)	Ref.	
BC/AgNW-1	11.4	67718		
BC/AgNW-2	23.8	121649	this work	
BC/AgNW-3	30.4	330046	this work	
BC/AgNW-4	36.5	608365		
H-AgNW/cellulose	8.1	3369	[S1]	
AgNW/PPy/PDA	50.0	120672	[S2]	
AgNW/CNT/cellulose	2.0	283	[S3]	
AgNW/C	67.0	363	[S4]	
AgNW/PU	3.0	1227	[85]	
PU-AgNW/CFF	5.5	15390	[S6]	
AgNW/cellulose	9.6	6751	[S7]	
AgNW/PVDF	0.5	26500	[S8]	
AgNW/MXene/CNF	5.0	274360 [S9]		
AgNW/Mxene/CNF	20.0	37378 [S10]		
AgNW/NiNP/cellulose	2.7	6331 [S11]		
AgNW/cellulose	50.0	557100 [S12]		
AgNW/Nanocellulose	50.0	200000	[S13]	
AgNW/GO	7.8	225580	[S14]	
AgNW/BMF	51.4	1800	[S15]	

Table S1. Comparisons of electrical conductivity between BC/AgNW and otherAgNW-based materials.

Materials	AgNW content (wt.%)	SE (dB)	Specific EMI SE (dB mm ⁻¹)	Ref.	
BC/AgNW-1	11.4	9.6	960.0		
BC/AgNW-2	23.8	36.9	3690.0	This work	
BC/AgNW-3	30.4	53.3	5330.0		
BC/AgNW-4	36.5	64.0	6400.0		
H-AgNW/cellulose	8.1	46.1	271.0	[S1]	
AgNW/PPy/PDA	50.0	48.4	2420.0	[S2]	
AgNW/CNT/cellulose	2.0	23.8	2.0	[83]	
AgNW/C	67.0	70.1	38.0	[S4]	
AgNW/PU	3.0	63.9	107.0	[85]	
PU-AgNW/CFF	5.5	106.0	294.0	[S6]	
AgNW/cellulose	9.6	48.6	240.0	[S7]	
AgNW/PVDF	0.5	107.2	1093.9	[S8]	
AgNW/MXene/CNF	5.0	51.8	8633.3	[89]	
AgNW/MXene/CNF	20.0	55.9	1597.1	[S10]	
AgNW/NiNP/cellulose	2.7	88.4	382.7	[S11]	
AgNW/cellulose	50.0	101.0	2270.0	[S12]	
AgNW/Nanocellulose	50.0	70.5	35.0	[S13]	
AgNW/GO	7.8	62.0	7750.0	[S14]	
AgNW/PHBV	5.3	45.9	2550.0	[S16]	
AgNW/PDMS	3.1	74.7	74.7	[S17]	
AgNW/PI	20.5	23.5	5.0	[S18]	
AgNW/WPU	28.6	64.0	28.0	[S19]	
AgNW/Silk/MXene	16.0	54.0	450.0	[S20]	
AgNW/PANI	43.4	48.0	3830.0	[S21]	
AgNW/ANF-MXene	1.8	48.1	1069.0	[S22]	

Table S2. Comparisons of shielding effectiveness (SE) and specific shieldingeffectiveness (SSE) between BC/AgNW and other AgNW-based materials.

References

- [S1] F. Ren, H. Guo, Z. Guo, Y. Jin, H. Duan, P. Ren, D. Yan, Polymers, 2019, 11, 1486.
- [S2] Y. Wang, F. Gu, L. Ni, K. Liang, K. Marcus, S. Liu, F. Yang, J. Chen, Z. Feng, *Nanoscale*, 2017, 9, 18318-18325.
- [S3] H. Choi, T. Lee, S. Lee, J. Lim, Y. Jeong, Compos. Sci. Technol., 2017, 150, 45-53.
- [S4] Y. Wan, P. Zhu, S. Yu, R. Sun, C. Wong, W. Liao, Small, 2018, 14, 1800534.
- [S5] L. Jia, K. Ding, R. Ma, H. Wang, W. Sun, D. Yan, B. Li, Z. Li, Adv. Mater. Technol., 2019, 4, 1800503.
- [S6] L. Jia, L. Xu, F. Ren, P. Ren, D. Yan, Z. Li, Carbon, 2019, 144, 101-108.
- [S7] T. Lee, S. Lee, Y. Jeong, ACS Appl. Mater. Interfaces, 2016, 8, 13123-13132.
- [S8] J. Qian, Z. Zhang, R. Bao, Z. Liu, M. Yang, W. Yang, Polym. Compos., 2021, 42, 522-531.
- [S9] Q. Liu, Y. Zhang, Y. Liu, Z. Liu, B. Zhang, Q. Zhang, J. Alloy. Compd., 2021, 860, 158151.
- [S10] B. Zhou, Q. Li, P. Xu, Y. Feng, J. Ma, C. Liu, C. Shen, *Nanoscale*, 2021, 13, 2378-2388.
- [S11] Y. Zhan, X. Hao, L. Wang, X. Jiang, Y. Cheng, C. Wang, Y. Meng, H. Xia,
 Z. Chen, ACS Appl. Mater. Interfaces, 2021, 13, 14623-14633.
- [S12] C. Liang, K. Ruan, Y. Zhang, J. Gu, ACS Appl. Mater. Interfaces, 2020, 12, 18023-18031.
- [S13] Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira, G. Nyström, ACS Nano, 2020, 14, 2927-2938.
- [S14] H. Jia, X. Yang, Q. Kong, L. Xie, Q. Guo, G. Song, L. Liang, J. Chen, Y. Li,
 C. Chen, J. Mater. Chem. A, 2021, 9, 1180-1191.
- [S15] C. Weng, G. Wang, Z. Dai, Y. Pei, L. Liu, Z. Zhang, Nanoscale, 2019, 11, 22804-22812.
- [S16] S. Yang, Y. Wang, Y. Song, L. Jia, G. Zhong, L. Xu, D. Yan, J. Lei, Z. Li, J. Mater. Chem. C, 2021, 9, 3307-3315.

- [S17] X. Yu, X. Liang, T. Zhao, P. Zhu, R. Sun, C. Wong, *Mater. Lett.*, 2021, 285, 129065.
- [S18] J. Ma, M. Zhan, K. Wang, ACS Appl. Mater. Interfaces, 2015, 7, 563-576.
- [S19] Z. Zeng, M. Chen, Y. Pei, S. Shahabadi, B. Che, P. Wang, X. Lu, ACS Appl. Mater. Interfaces, 2017, 9, 32211-32219.
- [S20] L. Liu, W. Chen, H. Zhang, Q. Wang, F. Guan, Z. Yu, Adv. Funct. Mater., 2019, 29, 1905197.
- [S21] F. Fang, Y. Li, H. Xiao, N. Hu, S. Fu, J. Mater. Chem. C, 2016, 4, 4193-4203.
- [S22] Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang, C. Liu, A. Wei, X. Xiang, L. Wei,
 J. Gu, ACS Nano, 2020, 14, 8368-8382.