Supporting Information

Machine learning-guided search for high-efficiency perovskite solar cells with doped electron transport layers

Chenlong She^{&a}, Qicheng Huang^{&a}, Cong Chen^{a,b}, Yue Jiang^a, Zhen Fan^{*a}, Jinwei Gao^{*a}

^a Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Normal University, Guangzhou 510006, China.

^b Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Rd., Pokfulam, Hong Kong, China.

S1 Datasets used in this work

By surveying 880 articles published between 2013 and 2020, 2006 experimental data points were extracted from these articles and used to construct the datasets.

The first dataset used for the first-step ML was composed of 1820 PSCs performance data points extracted from 795 articles published in 2013-2020. As the key performance metric of a PSC, PCE was chosen as target attribute. Nine major factors influencing the PCE were chose as features, which were perovskite type, ETL and second layer of ETL/ETL interlayer (ETL-2) materials, deposition procedure and method, perovskite precursor solvent, anti-solvent, HTL materials and additive. The details of the original dataset are given in **Table S1**. In the calculation, in order to avoid the over-fitting and improve the model performance, we simplified the dataset by reducing the number of variables, i.e., variables that appear less than or equal to 5 times in each feature were classified into "other" (See **Table S2** for details).

The second dataset used for the second-step ML containing PSCs with doped ETLs. This dataset contains 90 data points of doped-SnO₂-based PSCs collected from 36 articles and 96 data points of doped-TiO2-based PSCs collected from 49 articles. We took the efficiency improvement ratio (EIR) as the target attribute. An EIR induced by the ETL doping was obtained by dividing the PCE of a doped-ETL-based PSC by that of the corresponding undoped-ETL-based PSC. We set the doping element and concentration, the physical and chemical properties of the doping element such as atomic number (AN), ionic radius (IR/[pm]), ionic charge (IC), ionization energy (IE/[kJ·mol⁻¹]), electron affinity (EA/[kJ·mol⁻¹]), electronegativity (Paulingscales), electron numbers of s, p, d, f orbits (S/P/D/F orbit) and sum of s and p orbital radii (SP orbit/[pm]), and the optical and electrical properties of ETL after doping like Fermi level, CBM, bandgap and conductivity as the features (See **Tables S3-S5** for details). These data were obtained from the website <u>https://www.webelements.com/.</u> **Figure S1** shows all the doping elements for the TiO₂ and SnO₂ ETLs.

						Com	non	TiC)2 5	SnO ₂							
¹ H																	² He
³ Li	⁴ Be											5 B	6 C	⁷ N	ő	9 F	10 Ne
¹¹ Na	Mg											13 AI	¹⁴ Si	15 P	16 S	17 CI	¹⁸ Ar
19 K	²⁰ Ca	21 Sc	22 Ti	23 V	²⁴ Cr	²⁵ Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	³¹ Ga	³² Ge	33 As	³⁴ Se	35 Br	³⁶ Kr
37 Rb	38 Sr	39 Y	40 Zr	⁴¹ Nb	42 Mo	43 Tc	⁴⁴ Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	⁵⁴ Xe
Cs	⁵⁶ B a	71 Lu	72 Hf	⁷³ Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	⁷⁹ Au	80 Hg	81 TI	⁸² Pb	83 Bi	⁸⁴ Po	85 At	⁸⁶ Rn
87 Fr	⁸⁸ Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	¹¹² Cn	113 Nh	114 FI	115 Mc	116 Lv	117 Ts	118 Og
			57 La	58 Ce	⁵⁹ Pr	Nd	⁶¹ Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	⁶⁹ Tm	70 Yb	
			89 Ac	⁹⁰ Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	

Figure S1. Doping elements used for the TiO_2 and SnO_2 ETLs. Some elements are doped only in SnO_2 or TiO_2 , while some other elements are doped in both.

Article	Year	ETL	ETL-2	Perovskite	Deposition procedure	Depositi on method	Anti-solvent treatment	Precursor solution	HTL	HTL additive	PCE/[%]
Abrusci, A. et al., Nano Lett. 13, 3124– 3128 (2013)	2013	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	PCPDTBT	no	6.8
Abrusci, A. et al., Nano Lett. 13, 3124– 3128 (2013)	2013	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	P3HT	no	6.7
Abrusci, A. et al., Nano Lett. 13, 3124– 3128 (2013)	2013	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	P3HT	no	3.8
Abrusci, A. et al., Nano Lett. 13, 3124– 3128 (2013)	2013	TiO2	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	11.8
Abrusci, A. et al., Nano Lett. 13, 3124– 3128 (2013)	2013	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	11.7
Abrusci, A. et al., Nano Lett. 13, 3124– 3128 (2013)	2013	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10.2
Ball, J. M. et al., Energy Environ. Sci. 6, 1739 (2013)	2013	TiO2	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12.3
Bi, D. et al., J. Phys. Chem. Lett. 4, 1532– 1536 (2013)	2013	TiO2	mTiO2	MAPbl3	one-step	spin	no	GBL	DEH	Li+TBP	1.6
Bi, D. et al., J. Phys. Chem. Lett. 4, 1532– 1536 (2013)	2013	TiO2	mTiO2	MAPbl3	one-step	spin	no	GBL	РЗНТ	Li+TBP	4.5

Table S1. First-step ML dataset containing undoped-ETL-based PSCs.

Bi, D. et al., J. Phys. Chem. Lett. 4, 1532– 1536 (2013)	2013	TiO2	mTiO2	MAPbl3	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	8.5
Bi, D. et al., Nanoscale 5, 11686 (2013)	2013	ZnO	ZnO- nanorod	MAPbl3	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	5
Burschka, J. et al., Nature 499, 316–319 (2013)	2013	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	15
Cai, B. et al., Energy Environ. Sci. 6, 1480 (2013)	2013	TiO2	mTiO2	MAPbl3	one-step	spin	no	DMF	PCBTDPP	no	5.6
Cai, B. et al., Energy Environ. Sci. 6, 1480 (2013)	2013	TiO2	mTiO2	MAPbBr3	one-step	spin	no	GBL	PCBTDPP	no	3
Cai, B. et al., Energy Environ. Sci. 6, 1480 (2013)	2013	TiO2	mTiO2	MAPbBr3	one-step	spin	no	GBL	РЗНТ	no	0.8
Chen, H. et al., Chem. Commun. 49, 7277 (2013)	2013	TiO2	mTiO2	MAPbI3	one-step	spin	no	GBL	РЗНТ	Li+TBP	6.5
Chen, H. et al., Chem. Commun. 49, 7277 (2013)	2013	TiO2	mTiO2	MAPbl3	one-step	spin	no	GBL	РЗНТ	Li+TBP	4.1
Colella, S. et al., Chem. Mater. 25, 4613–4618 (2013)	2013	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	7.4
Colella, S. et al., Chem. Mater. 25, 4613–4618 (2013)	2013	TiO2	0	MAPbl3	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	4.8
Dharani, S. et al., Nanoscale 6, 1675– 1679 (2014)	2013	TiO2	0	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	3.1

Dharani, S. et al., Nanoscale 6, 1675– 1679 (2014)	2013	TiO2	TiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	9.8
Edri, E. et al., J. Phys. Chem. Lett. 4, 897–902 (2013)	2013	TiO2	mAl2O3	MAPbBr3	one-step	spin	no	DMF	РСВМ	no	0.7
Edri, E. et al., J. Phys. Chem. Lett. 4, 897–902 (2013)	2013	TiO2	mAl2O3	MAPbBr3	one-step	spin	no	DMF	TPD	no	0.7
Edri, E. et al., J. Phys. Chem. Lett. 4, 897–902 (2013)	2013	TiO2	mAl2O3	MAPbBr3	one-step	spin	no	DMF	PDI	no	0.6
Edri, E. et al., J. Phys. Chem. Lett. 4, 897–902 (2013)	2013	TiO2	mTiO2	MAPbBr3	one-step	spin	no	DMF	PDI	no	0.5
Edri, E. et al., J. Phys. Chem. Lett. 4, 897–902 (2013)	2013	TiO2	mAl2O3	MAPbBr3	one-step	spin	no	DMF	РЗНТ	no	0.5
Heo, J. H. et al., Nat. Photonics 7, 486– 491 (2013)	2013	TiO2	mTiO2	MAPb13	one-step	spin 2-3	no	GBL	no	no	2.5
Heo, J. H. et al., Nat. Photonics 7, 486– 491 (2013)	2013	TiO2	mTiO2	MAPb13	one-step	spin 2-3	no	GBL	PCPDTBT	no	5.3
Heo, J. H. et al., Nat. Photonics 7, 486– 491 (2013)	2013	TiO2	mTiO2	MAPb13	one-step	spin 2-3	no	GBL	PCDTBT	no	4.2
Heo, J. H. et al., Nat. Photonics 7, 486– 491 (2013)	2013	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	no	GBL	ΡΤΑΑ	no	12
Heo, J. H. et al., Nat. Photonics 7, 486– 491 (2013)	2013	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	no	GBL	РЗНТ	Li+TBP	6.7

Heo, J. H. et al., Nat. Photonics 7, 486– 491 (2013)	2013	TiO2	mTiO2	MAPb13	one-step	spin 2-3	no	GBL	spiro-OMeTAD	Li+TBP	8.4
Jeon, N. J. et al., J. Am. Chem. Soc. 135, 19087–19090 (2013)	2013	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	no	GBL	no	no	8
Jeon, N. J. et al., J.Am. Chem. Soc. 135, 19087–19090 (2013)	2013	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	no	GBL	Ру-С	Li+TBP+FK 269	12.4
Jeon, N. J. et al., J. Am. Chem. Soc. 135, 19087–19090 (2013)	2013	TiO2	mTiO2	MAPb13	one-step	spin 2-3	no	GBL	spiro-OMeTAD	Li+TBP+FK 269	12.7
Shi, J. J. et al., Chinese Phys. Lett. 30, 128402 (2013)	2013	TiO2	mTiO2	MAPb13	one-step	spin	no	GBL	no	no	5.1
Shi, J. J. et al., Chinese Phys. Lett. 30, 128402 (2013)	2013	TiO2	mTiO2	MAPbl3	one-step	spin	no	GBL	no	no	3.3
Kim, H. S. et al., Nano Lett. 13, 2412– 2417 (2013)	2013	TiO2	TiO2	MAPb13	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	9.4
Kumar, M. H. et al., Chem. Commun. 49, 11089 (2013)	2013	ZnO	0	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	5.5
Kumar, M. H. et al., Chem. Commun. 49, 11089 (2013)	2013	ZnO	ZnO- nanorod	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	8.9
Laban, W. A. and Etgar, L., Energy Environ. Sci. 6, 3249 (2013)	2013	TiO2	mTiO2	MAPbI3	one-step	spin 2-3	no	GBL	no	no	8
Bi, D. et al., RSC Adv. 3, 18762 (2013)	2013	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	9.5

Bi, D. et al., RSC Adv. 3, 18762 (2013)	2013	TiO2	mZrO2	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	10.8
Liu, M. et al., Nature 501, 395–398 (2013)	2013	TiO2	0	MAPbl3-xClx	one-step	CVD	no	na	spiro-OMeTAD	Li+TBP	15.4
Liu, M. et al., Nature 501, 395–398 (2013)	2013	TiO2	0	MAPbl3-xClx	one-step	spin	no	na	spiro-OMeTAD	Li+TBP	8.6
Liu, D. and Kelly, T. L., Nat. Photonics 8, 133– 138 (2013)	2013	ZnO	0	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	15.7
Noh, J. H. et al., Nano Lett. 13, 1764– 1769 (2013)	2013	TiO2	mTiO2	MAPbl3- xBrx	one-step	spin 2-3	no	DMF+GBL	ΡΤΑΑ	Li+TBP	12.3
Noh, J. H. et al., J. Mater. Chem. A 1, 11842 (2013)	2013	TiO2	mTiO2	MAPb13	one-step	spin 2-3	no	GBL	spiro-OMeTAD	Li+TBP+FK 209	10.4
Qiu, J. et al., Nanoscale 5, 3245 (2013)	2013	TiO2	TiO2	MAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	4.3
Qiu, J. et al., Nanoscale 5, 3245 (2013)	2013	TiO2	TiO2	MAPbl2Br	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	4.9
Zhang, W. et al., Nano Lett. 13, 4505– 4510 (2013)	2013	TiO2	mAl2O3	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10.7
Zhang, W. et al., Nano Lett. 13, 4505– 4510 (2013)	2013	TiO2	Au@SiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	11.4
Abate, A. et al., Nano Lett. 14, 3247–3254- 2014	2014	TiO2	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.7

Abate, A. et al., Nano Lett. 14, 3247–3254 (2014)	2014	TiO2	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13
Abate, A. et al., Nano Lett. 14, 3247–3254 (2014)	2014	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	6.1
Abate, A. et al., Nano Lett. 14, 3247–3254 (2014)	2014	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	3.8
Aharon, S. et al., Phys. Chem. Chem. Phys. 16, 10512– 10518 (2014)	2014	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	na	no	no	10.9
Aharon, S. et al., J. Phys. Chem. C 118, 17160–17165 (2014)	2014	TiO2	mTiO2	MAPbBr3	two-step	spin-dip	no	DMF	no	no	1.7
Aharon, S. et al., J. Phys. Chem. C 118, 17160–17165 (2014)	2014	TiO2	mTiO2	MAPbi3	two-step	spin-dip	no	DMF	no	no	7.2
Aharon, S. et al., J. Phys. Chem. C 118, 17160–17165 (2014)	2014	TiO2	mTiO2	MAPbl3- xBrx	two-step	spin-dip	no	DMF	no	no	8.5
Badia, L. et al., APL Mater. 2, 081507 (2014)	2014	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	9.2
Badia, L. et al., APL Mater. 2, 081507 (2014)	2014	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+Ir	10.8
Bera, A. et al., J. Phys. Chem. C 118, 28494– 28501 (2014)	2014	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	7.8
Bera, A. et al., J. Phys. Chem. C 118, 28494–28501 (2014)	2014	TiO2	Msto	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	7.6

Chandiran, A. K. et al., Adv. Mater. 26, 4309– 4312 (2014)	2014	0	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	11.5
Chandiran, A. K. et al., Adv. Mater. 26, 4309–4312 (2014)	2014	0	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	7.2
Chavhan, S. et al., J. Mater. Chem. A 2, 12754–12760 (2014)	2014	TiO2	0	MAPbl3-xClx	one-step	spin 2-3	no	DMF	CuSCN	no	6.4
Chen, Q. et al., Nano Lett. 14, 4158–4163 (2014)	2014	TiO2	0	MAPb13	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	12
Chen, Q. et al., J. Am. Chem. Soc. 136, 622– 625 (2014)	2014	TiO2	0	MAPbi3	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	12.1
Choi, H. et al., Chem. - A Eur. J. 20, 10894–10899 (2014)	2014	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	no	no	6.9
Choi, H. et al., Chem. - A Eur. J. 20,10894–10899 (2014)	2014	TiO2	mTiO2	MAPbi3	two-step	spin-dip	no	DMF	OMeTPA-FA	no	11.1
Choi, H. et al., Chem. - A Eur. J. 20, 10894–10899 (2014)	2014	TiO2	mTiO2	MAPbi3	two-step	spin-dip	no	DMF	OMeTPA-FA	Li+TBP	12.4
Choi, H. et al., Chem. - A Eur. J. 20, 10894–10899 (2014)	2014	TiO2	mTiO2	MAPbi3	two-step	spin-dip	no	DMF	OMeTPA-TPA	Li+TBP	11
Choi, H. et al., Chem. - A Eur. J. 20, 10894–10899 (2014)	2014	TiO2	mTiO2	MAPbi3	two-step	spin-dip	no	DMF	OMeTPA-FA	Li+TBP+FK 209	13.6
Choi, H. et al., Chem. - A Eur. J. 20, 10894–10899 (2014)	2014	TiO2	mTiO2	МАРЫЗ	two-step	spin-dip	no	DMF	OMeTPA-TPA	Li+TBP+FK 209	12.3

Choi, H. et al., Chem. - A Eur. J. 20, 10894–10899 (2014)	2014	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	14.7
Christians, J. A. et al., J. Am. Chem. Soc. 136, 758–764 (2014)	2014	TiO2	mTiO2	MAPbl3	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	7.9
Christians, J. A. et al., J. Am. Chem. Soc. 136, 758–764 (2014)	2014	TiO2	mTiO2	МАРЫЗ	one-step	spin	no	GBL	Cul	no	6
Colella, S. et al., J. Phys. Chem. Lett. 5, 3532–3538 (2014)	2014	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	9.2
Conings, B. et al., APL Mater. 2, 081505 (2014)	2014	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMSO	РЗНТ	no	13.6
Conings, B. et al., Adv. Mater. 26, 2041–2046 (2014)	2014	TiO2	0	MAPbi2Ci	one-step	spin	no	DMF	РЗНТ	no	11.4
Ding, Y. et al., J. Power Sources 272, Ahead of Print (2014)	2014	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	4.5
Ding, Y. et al., J. Power Sources 272, Ahead of Print (2014)	2014	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF+PVP	spiro-OMeTAD	Li+TBP	8.7
Do, K. et al., Chem. Commun. 50, 10971–10974 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	Triazine-Th- OMeTPA	Li+TBP+FK 102	12.5
Do, K. et al., Chem. Commun. 50, 10971–10974 (2014)	2014	TiO2	mTiO2	MAPbi3	two-step	spin-dip	no	DMF	Triazine-Ph- OMeTPA	Li+TBP+FK 102	10.9
Do, K. et al., Chem. Commun. 50, 10971–10974 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	13.5

Edri, E. et al., J. Phys. Chem. Lett. 5, 429–433 (2014)	2014	TiO2	mAl2O3	MAPbBr3	one-step	spin 2-3	no	DMF	CBP	Li+TBP	0.4
Edri, E. et al., J. Phys. Chem. Lett. 5, 429–433 (2014)	2014	TiO2	mAl2O3	MAPbBr3- xClx	one-step	spin 2-3	no	DMF	СВР	Li+TBP	2.7
Edri, E. et al., J.Phys. Chem. Lett. 5, 429–433 (2014)	2014	TiO2	mAl2O3	MAPbBr3- xClx	one-step	spin 2-3	no	DMF	СВР	TBP	0.4
Eperon, G. E. et al., Energy Environ. Sci. 7, 982 (2014)	2014	TiO2	0	FAPbI3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	14.2
Etgar, L. et al., J. Mater. Chem. A 2, 11586– 11590 (2014)	2014	TiO2	mTiO2	MAPbi3	one-step	spin	no	GBL	no	no	3
Etgar, L. et al., J. Mater. Chem. A 2, 11586– 11590 (2014)	2014	TiO2	mTiO2	MAPbI3	one-step	spin	no	GBL	PbS QDs	no	3.6
Di Giacomo, F. et al., J. Power Sources 251, 152–156 (2014)	2014	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	РЗНТ	Li+TBP	9.3
Di Giacomo, F. et al., J. Power Sources 251, 152–156 (2014)	2014	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	8.6
Guo, Y. et al., J. Mater. Chem. A 2, 13827–13830 (2014)	2014	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	РЗНТ	no	9.2
Guo, Y. et al., J. Mater. Chem. A 2, 13827– 13830 (2014)	2014	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	РЗНТ	Li	11.2
Guo, Y. et al., J. Mater. Chem. A 2, 13827–13830 (2014)	2014	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	РЗНТ	Li+D-TBP	12.4

Guo, Y. et al., J. Mater. Chem. A 2, 13827– 13830 (2014)	2014	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	РЗНТ	D-TBP	9.1
Hanusch, F. C. et al., J. Phys. Chem. Lett. 5, 2791–2795 (2014)	2014	TiO2	0	MAPbBr3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	0.4
Hanusch, F. C. et al., J. Phys. Chem. Lett. 5, 2791–2795 (2014)	2014	TiO2	0	FAPbBr3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	6.5
Hao, F. et al., Nat. Photonics 8, 489– 494 (2014)	2014	TiO2	mTiO2	MASnIBr2	one-step	spin	no	DMF	spiro-OMeTAD	Li+2,6lutidie ne	6
Hao, F. et al., Nat. Photonics 8, 489– 494 (2014)	2014	TiO2	mTiO2	MASnl2Br	one-step	spin	no	DMF	spiro-OMeTAD	Li+2,6lutidie ne	5.6
Hao, F. et al., Nat. Photonics 8, 489– 494 (2014)	2014	TiO2	mTiO2	MASnl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+2,6lutidie ne	5.4
Hao, F. et al., Nat. Photonics 8, 489– 494 (2014)	2014	TiO2	mTiO2	MASnBr3	one-step	spin	no	DMF	spiro-OMeTAD	Li+2,6lutidie ne	4.5
Hao, F. et al., J. Am. Chem. Soc. 136, 8094–8099 (2014)	2014	TiO2	mTiO2	MAPbI3	one-step	spin	no	DMF	spiro-OMeTAD	Li+2,6lutidie ne	8.3
Hao, F. et al., J. Am. Chem. Soc. 136, 8094–8099 (2014)	2014	TiO2	mTiO2	MASn0.25P b 0.75l3	one-step	spin	no	DMF	spiro-OMeTAD	Li+2,6lutidie ne	7.4
Hao, F. et al., J. Am. Chem. Soc. 136,8094– 8099 (2014)	2014	TiO2	mTiO2	MASn0.5Pb 0 .5I3	one-step	spin	no	DMF	spiro-OMeTAD	Li+2,6lutidie ne	7.3
Hao, F. et al., J. Am. Chem. Soc. 136, 8094–8099 (2014)	2014	TiO2	mTiO2	MASn0.75P b 0.25l3	one-step	spin	no	DMF	spiro-OMeTAD	Li+2,6lutidie	3.7

Hao, F. et al., J. Am. Chem. Soc. 136, 8094–8099 (2014)	2014	TiO2	mTiO2	MASnl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+2,6lutidie ne	5.4
Hao, F. et al., J. Am. Chem. Soc. 136, 16411–16419 (2014)	2014	TiO2	mTiO2	MAPb13	one-step	spin	no	DMF	no	no	6.4
Hao, F. et al., J. Am. Chem. Soc. 136, 16411–16419 (2014)	2014	TiO2	mTiO2	MAPb13	two-step	vasp	no	DMF	no	no	10.6
Hu, Q. et al., ACS Nano 8, 10161– 10167 (2014)	2014	TiO2	0	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	14.2
Hu, Q. et al., ACS Nano 8, 10161– 10167 (2014)	2014	ZnO	0	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.6
Hu, Q. et al., ACS Nano 8, 10161– 10167 (2014)	2014	Cs2CO3	0	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	15.1
Huang, F. et al., Nano Energy 10, 10– 18 (2014)	2014	TiO2	0	MAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	17
Huang, F. et al., Nano Energy 10, 10– 18 (2014)	2014	TiO2	0	MAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	5.7
Huang, F. et al., Nano Energy 10, 10– 18 (2014)	2014	TiO2	0	MAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.4
Huang, F. et al., Nano Energy 10, 10– 18 (2014)	2014	TiO2	0	MAPbI3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	8.6
Huang, F. et al., Nano Energy 10, 10– 18 (2014)	2014	TiO2	0	MAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	4.3

lto, S. et al., ChemPhysChem 15, 1194–1200 (2014)	2014	TiO2	mTiO2	MAPbI3	one-step	spin	no	GBL	no	no	1.4
Ito, S. et al., ChemPhysChem 15, 1194–1200 (2014)	2014	TiO2	mTiO2	MAPbl3	one-step	spin	no	GBL	no	no	0.8
lto, S. et al., ChemPhysChem 15, 1194–1200 (2014)	2014	TiO2	mTiO2	MAPbl3	one-step	spin	no	GBL	CuSCN	no	4.9
lto, S. et al., ChemPhysChem 15, 1194–1200 (2014)	2014	TiO2	mTiO2	MAPbI3	one-step	spin	no	GBL	CuSCN	no	1.8
lto, S. et al., J. Phys. Chem. C 118, 16995–17000 (2014)	2014	TiO2	mTiO2	MAPbl3	one-step	spin	no	GBL	CuSCN	no	5.1
lto, S. et al., J. Phys. Chem. C 118, 16995–17000 (2014)	2014	TiO2	mTiO2	MAPbl3	one-step	spin	no	GBL	CuSCN	no	4.8
Jeon, N. J. et al., Nat. Mater. 13, 897– 903 (2014)	2014	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	18
Jeon, N. J. et al., J. Am. Chem. Soc. 136, 7837–7840 (2014)	2014	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	15.2
Jeon, N. J. et al., J. Am. Chem. Soc. 136, 7837–7840 (2014)	2014	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	14.9
Jeon, N. J. et al., J. Am. Chem. Soc. 136, 7837–7840 (2014)	2014	TiO2	mTiO2	MAPbI3	one-step	spin 2-3	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	13.9
Jeon, N. J. et al., Nat. Mater. 13, 897– 903 (2014)	2014	TiO2	0	MAPbl3- xBrx	one-step	spin 2-3	toluene	DMSO+GBL	ΡΤΑΑ	no	15.8

Jeon, N. J. et al., Nat. Mater. 13, 897– 903 (2014)	2014	TiO2	mTiO2	MAPbl3- xBrx	one-step	spin 2-3	toluene	DMSO+GBL	ΡΤΑΑ	no	16.7
Juarez-Perez, E. J. et al., J. Phys. Chem. Lett. 5, 680–685 (2014)	2014	0	mTiO2	МАРЫЗ	two-step	spin-dip	no	DMF	no	no	0.1
Juarez-Perez, E. J. et al., J. Phys. Chem. Lett. 5, 680–685 (2014)	2014	ZnO	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	no	no	1.8
Juarez-Perez, E. J. et al., J. Phys. Chem. Lett. 5, 680–685 (2014)	2014	CdS	mAl2O3	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	1.5
Juarez-Perez, E. J. et al., J. Phys. Chem. Lett. 5, 680–685 (2014)	2014	0	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	5
Juarez-Perez, E. J. et al., J. Phys. Chem. Lett. 5, 680–685 (2014)	2014	ZnO	mTiO2	МАРЫЗ	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	9.1
Juarez-Perez, E. J. et al., J. Phys. Chem. Lett. 5, 680–685 (2014)	2014	ZnO	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	7.9
Ke, W. et al., ACS Appl. Mater. Interfaces 6, 15959– 15965 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	15.1
Koh, T. M. et al., ChemSusChem 7, 1909–1914 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	11

Koh, T. M. et al., ChemSusChem 7, 1909–1914 (2014)	2014	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+MY 11	11.9
Krishna, A. et al., Chem. Sci. 5, 2702– 2709 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	no	no	4.7
Krishna, A. et al., Chem. Sci. 5, 2702– 2709 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	T1no3	Li+TBP+FK 102	12.4
Krishna, A. et al., Chem. Sci. 5, 2702– 2709 (2014)	2014	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	T1no2	Li+TBP+FK 102	12.2
Krishna, A. et al., Chem. Sci. 5, 2702– 2709 (2014)	2014	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	T1no1	Li+TBP+FK 102	8.4
Krishna, A. et al., Chem. Sci. 5, 2702– 2709 (2014)	2014	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	12.9
Krishnamoorthy, T. et al., J. Mater. Chem. A 2, 6305–6309 (2014)	2014	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	КТМЗ	no	7.3
Krishnamoorthy, T. et al., J. Mater. Chem. A 2, 6305–6309 (2014)	2014	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	КТМЗ	Li+TBP+FK 102	8.7
Krishnamoorthy, T. et al., J. Mater. Chem. A 2, 6305–6309 (2014)	2014	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	КТМЗ	Li+TBP+FK 209	11
Krishnamoorthy, T. et al., J. Mater. Chem. A 2, 6305–6309 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	11.4

Kwon, Y. S. et al., Energy Environ. Sci. 7, 1454 (2014)	2014	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	no	GBL	PDPPDBTE	no	9.2
Kwon, Y. S. et al., Energy Environ. Sci. 7, 1454 (2014)	2014	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	no	GBL	РЗНТ	Li+TBP	6.3
Kwon, Y. S. et al., Energy Environ. Sci. 7, 1454 (2014)	2014	TiO2	mTiO2	MAPb13	one-step	spin 2-3	no	GBL	spiro-OMeTAD	Li+TBP	7.6
Lee, JW. et al., ChemPhysChem 15, 2595–2603 (2014)	2014	TiO2	mTiO2	MAPb13	one-step	spin	no	DMA	PTB-DCB21	no	8.7
Lee, JW. et al., ChemPhysChem 15, 2595–2603 (2014)	2014	TiO2	mTiO2	MAPb13	one-step	spin	no	DMA	РТВ-ВО	no	7.4
Lee, JW. et al., ChemPhysChem 15, 2595–2603 (2014)	2014	TiO2	mTiO2	MAPb13	one-step	spin	no	DMA	spiro-OMeTAD	no	7
Lee, JW. et al., ChemPhysChem 15, 2595–2603 (2014)	2014	TiO2	mTiO2	MAPb13	one-step	spin	no	DMA	PTB-DCB21	Li+TBP	9.5
Lee, JW. et al., ChemPhysChem 15, 2595–2603 (2014)	2014	TiO2	mTiO2	MAPb13	one-step	spin	no	DMA	spiro-OMeTAD	Li+TBP	11.6
Lee, J. W. et al., Adv. Mater. 26, 4991– 4998 (2014)	2014	TiO2	mTiO2	FAPb13	two-step	spin 2-3- dip	no	DMF	spiro-OMeTAD	Li+TBP	16
Lee, JW. et al., J. Mater. Chem. A 2, 9251 (2014)	2014	TiO2	mTiO2	MAPbl3	one-step	spin	no	DMA	spiro-OMeTAD	Li+TBP	9
Lee, JW. et al., J. Mater. Chem. A 2, 9251 (2014)	2014	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMA	spiro-OMeTAD	Li+TBP	14.5

Leijtens, T. et al., J. Phys. Chem. Lett. 5, 1096–1102 (2014)	2014	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	8.6
Li, H. et al., Angew. Chemie - Int. Ed. 53, 4085–4088 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	na	H1no1	Li+TBP	11.1
Li, H. et al., Angew. Chemie - Int. Ed. 53, 4085–4088 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	na	H1no1	Li+TBP+FK 102	13.8
Li, H. et al., Angew. Chemie - Int. Ed. 53, 4085–4088 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	na	spiro-OMeTAD	Li+TBP+FK 102	13.7
Li, Z. et al., ACS Nano 8, 6797–6804 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	no	no	6.9
Li, Z. et al., ACS Nano 8, 6797–6804 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	no	no	5.1
Li, Z. et al., ACS Nano 8, 6797–6804 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	9.9
Li, W. et al., J. Mater. Chem. A 2, 13587– 13592 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	11.9
Li, W. et al., J. Mater. Chem. A 2, 13587– 13592 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	9
Liang, L. et al., ACS Appl. Mater. Interfaces 6, 20585– 20589 (2014)	2014	ZnO	0	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.4
Liang, L. et al., ACS Appl. Mater. Interfaces 6, 20585– 20589 (2014)	2014	ZnO	0	MAPbi3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	7

Liu, J. et al., Energy Environ. Sci. 7, 2963–2967 (2014)	2014	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	TTF-1	no	11
Liu, J. et al., Energy Environ. Sci. 7, 2963–2967 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	РЗНТ	no	6.2
Liu, J. et al., Energy Environ. Sci. 7, 2963–2967 (2014)	2014	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	no	6.2
Liu, J. et al., Energy Environ. Sci. 7, 2963–2967 (2014)	2014	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	TTF-1	Li+TBP	4.4
Liu, J. et al., Energy Environ. Sci. 7,2963– 2967 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	РЗНТ	Li+TBP	6.7
Liu, J. et al., Energy Environ. Sci. 7, 2963–2967 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	11.4
Liu, D., Yang, J. and Kelly, T. L., J. Am. Chem. Soc. 136, 17116–17122 (2014)	2014	ZnO	0	MAPbI3	two-step	spin-dip	no	DMF	РЗНТ	Li+TBP	11.7
Liu, D., Yang, J. and Kelly, T. L., J. Am. Chem. Soc. 136, 17116–17122 (2014)	2014	no	no	MAPbI3	two-step	spin-dip	no	DMF	РЗНТ	Li+TBP	11.6
Liu, D., Yang, J. and Kelly, T. L., J. Am. Chem. Soc. 136, 17116–17122 (2014)	2014	ZnO	no	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	14.7
Liu, D., Yang, J. and Kelly, T. L., J. Am. Chem. Soc. 136, 17116–17122 (2014)	2014	no	no	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.5

Lv, S. et al., Chem. Commun. 50, 6931 (2014)	2014	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	HTM2	no	11.6
Lv, S. et al., Chem. Commun. 50, 6931 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	HTM1	no	11.3
Mahmood, K. et al., Nanoscale 6, 9127 (2014)	2014	ZnO	mZnO	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	10.9
Mahmood, K. et al., Nanoscale 6, 9127 (2014)	2014	ZnO-Al	m-Al-ZnO	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	12.2
Manseki, K. et al., RSC Adv. 4, 9652– 9655 (2014)	2014	TiO2	TiO2	MAPbl3	one-step	spin 2-3	no	GBL	РЗНТ	Li+TBP	4.2
Manseki, K. et al., RSC Adv. 4, 9652– 9655 (2014)	2014	TiO2	TiO2	MAPbl3	one-step	spin 2-3	no	GBL	РЗНТ	Li+TBP	3.1
Moehl, T. et al., J. Phys. Chem. Lett. 5, 3931– 3936 (2014)	2014	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	17.1
Moehl, T. et al., J. Phys. Chem. Lett. 5, 3931– 3936 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	14.6
Nagarjuna, P. et al., Electrochim. Acta 151, 21–26 (2014)	2014	TiO2	mTiO2	MAPbl3	one-step	spin	no	DMF	no	no	2.7
Nagarjuna, P. et al., Electrochim. Acta 151, 21–26 (2014)	2014	TiO2	mTiO2	MAPbl3	one-step	spin	no	DMF	copolymerP	no	6.6
Nagarjuna, P. et al., Electrochim. Acta 151, 21–26 (2014)	2014	TiO2	mTiO2	MAPbl3	one-step	spin	no	DMF	РЗНТ	no	4.2

Nguyen, W. H. et al., J. Am. Chem. Soc.136, 10996–11001 (2014)	2014	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	10.5
Nguyen, W. H. et al., J. Am. Chem. Soc. 136, 10996–11001 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	spiro(TFSI)2 +TBP	10.6
Niu, G. et al., J. Mater. Chem. A 2, 705–710 (2014)	2014	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	no	DMF	spiro-OMeTAD	Li+TBP	4.7
Niu, G. et al., J. Mater. Chem. A 2, 705–710 (2014)	2014	TiO2	mTiO2	MAPbI3	one-step	spin 2-3	no	DMF	spiro-OMeTAD	Li+TBP	4.6
Noel, N. K. et al., ACS Nano 8, 9815– 9821 (2014)	2014	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16.5
Noel, N. K. et al., ACS Nano 8, 9815– 9821 (2014)	2014	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.3
Noel, N. K. et al., ACS Nano 8, 9815– 9821 (2014)	2014	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.1
Noel, N. K. et al., Energy Environ. Sci. 7, 3061–3068 (2014)	2014	TiO2	mAl2O3	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	H+TBP	15
Noel, N. K. et al., Energy Environ. Sci. 7, 3061–3068 (2014)	2014	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	H+TBP	11.5
Noel, N. K. et al., Energy Environ. Sci. 7, 3061–3068 (2014)	2014	TiO2	mTiO2	MASnl3	one-step	spin	no	DMF	spiro-OMeTAD	H+TBP	6.4
Ogomi, Y. et al., J. Phys. Chem. Lett. 5, 1004– 1011 (2014)	2014	TiO2	mTiO2	MASn1- xPbxl3	one-step	spin	no	DMF	РЗНТ	no	4.2

Ogomi, Y. et al., J. Phys. Chem. Lett. 5, 1004– 1011 (2014)	2014	TiO2	mTiO2	MAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12
Ogomi, Y. et al., in ChemPhysChem 15, 1062–1069 (2014)	2014	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	7.5
Ogomi, Y. et al., in ChemPhysChem 15, 1062–1069 (2014)	2014	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	7
Ogomi, Y. et al., in ChemPhysChem 15, 1062–1069 (2014)	2014	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	6.6
Pang, S. et al., Chem. Mater. 26, 1485–1491 (2014)	2014	TiO2	mTiO2	FAPb13	one-step	spin	no	DMF	РЗНТ	no	3.7
Pang, S. et al., Chem. Mater. 26, 1485–1491 (2014)	2014	TiO2	mTiO2	FAPbI3	two-step	spin-dip	no	DMF	РЗНТ	no	7.5
Pathak, S. K. et al., Adv. Funct. Mater. 24, 6046–6055 (2014)	2014	TiO2	mAl2O3	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.8
Pathak, S. K. et al., Adv. Funct. Mater. 24, 6046–6055 (2014)	2014	TiO2	mAl2O3	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	11.1
Pellet, N. et al., Angew. Chemie - Int. Ed. 53, 3151–3157 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	12.5
Pellet, N. et al., Angew. Chemie - Int. Ed. 53, 3151–3157 (2014)	2014	TiO2	mTiO2	FAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	11

Pellet, N. et al., Angew. Chemie - Int. Ed. 53, 3151–3157 (2014)	2014	TiO2	mTiO2	(MA)0.6(FA) 0.4Pbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	14.9
Qin, P. et al., Nat. Commun. 5, 3834 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin 2-3- dip	no	DMF	no	no	6.7
Qin, P. et al., Nat. Commun. 5, 3834 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	no	no	3.8
Qin, P. et al., Nat. Commun. 5, 3834 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin 2-3- dip	no	DMF	CuSCN	no	12.4
Qin, P. et al., Nat. Commun. 5, 3834 (2014)	2014	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	CuSCN	no	11.2
Qin, P. et al., J. Am. Chem. Soc. 136, 8516–8519 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	no	no	7.7
Qin, P. et al., J. Am. Chem. Soc. 136, 8516–8519 (2014)	2014	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	Fused-F	no	12.8
Qin, P. et al., J. Am. Chem. Soc. 136, 8516–8519 (2014)	2014	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	11.7
Qin, P. et al., Nanoscale 6, 1508– 1514 (2014)	2014	TiO2	mTiO2	MAPb13	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	10.6
Qin, P. et al., Nanoscale 6, 1508– 1514 (2014)	2014	TiO2	mTiO2	MAPbI3	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	11.4
Ramos, F. J. et al., ChemPhysChem 15, 1148–1153 (2014)	2014	TiO2	ZnO- nanocolu mn	MAPbI3	two-step	spin-dip	no	DMF	ΡΤΑΑ	Li+TBP	1.3

Ramos, F. J. et al., ChemPhysChem 15, 1148–1153 (2014)	2014	TiO2	ZnO- nanocolu mn	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	4.8
Ryu, S. et al., Energy Environ. Sci. 7, 2614–2618 (2014)	2014	TiO2	mTiO2	MAPbBr3	one-step	spin 2-3	toluene	DMF+GBL	PIF8-TAA	Li+TBP	6.7
Ryu, S. et al., Energy Environ. Sci. 7, 2614–2618 (2014)	2014	TiO2	mTiO2	MAPbBr3	one-step	spin 2-3	toluene	DMF+GBL	PF8-TAA	Li+TBP	6
Ryu, S. et al., Energy Environ. Sci. 7, 2614–2618 (2014)	2014	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	toluene	DMF+GBL	PIF8-TAA	Li+TBP	9.1
Ryu, S. et al., Energy Environ. Sci. 7, 2614–2618 (2014)	2014	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	toluene	DMF+GBL	PF8-TAA	Li+TBP	4.6
Ryu, S. et al., Energy Environ. Sci. 7, 2614–2618 (2014)	2014	TiO2	mTiO2	MAPbBr3	one-step	spin 2-3	toluene	DMF+GBL	ΡΤΑΑ	Li+TBP	5.9
Ryu, S. et al., Energy Environ. Sci. 7, 2614–2618 (2014)	2014	TiO2	mTiO2	MAPb13	one-step	spin 2-3	toluene	DMF+GBL	ΡΤΑΑ	Li+TBP	16.2
Sarkar, A. et al., J. Phys. Chem. C 118, 16688–16693 (2014)	2014	TiO2	mTiO2	MAPb(I0.9Br 0.1)3	one-step	spin 2-3	no	GBL	ΡΤΑΑ	no	12.8
Shi, J. et al., Appl. Phys. Lett. 104, 063901 (2014)	2014	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	no	no	10.5
Shi, J. et al., ACS Appl. Mater. Interfaces 6, 9711– 9718 (2014)	2014	TiO2	mTiO2	MAPbI3	two-step	spin 2-3- dip	no	DMF	no	no	10.5
Son, DY. et al., J. Phys. Chem. C 118, 16567–16573 (2014)	2014	TiO2	TiO2	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10

Son, DY. et al., J. Phys. Chem. C 118, 16567–16573 (2014)	2014	ZnO	ZnO- nanorod	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	11.1
Suarez, B. et al., J. Phys. Chem. Lett. 5, 1628–1635 (2014)	2014	TiO2	mTiO2	MAPbBr3	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	1.4
Suarez, B. et al., J. Phys. Chem. Lett. 5, 1628–1635 (2014)	2014	TiO2	mAl2O3	MAPbBr3- xClx	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	3.2
Suarez, B. et al., J. Phys. Chem. Lett. 5, 1628–1635 (2014)	2014	TiO2	mTiO2	MAPbBr3- xClx	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	2.9
Suarez, B. et al., J. Phys. Chem. Lett. 5, 1628–1635 (2014)	2014	TiO2	mTiO2	MAPbI3	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	6.5
Suarez, B. et al., J. Phys. Chem. Lett. 5, 1628–1635 (2014)	2014	TiO2	mAl2O3	MAPbl3- xBrx	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	4.5
Suarez, B. et al., J. Phys. Chem. Lett. 5, 1628–1635 (2014)	2014	TiO2	mTiO2	MAPbl3- xBrx	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	2.9
Suarez, B. et al., J. Phys. Chem. Lett. 5, 1628–1635 (2014)	2014	TiO2	0	MAPbI3-xClx	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	11.1
Suarez, B. et al., J. Phys. Chem. Lett. 5, 1628–1635 (2014)	2014	TiO2	mAl2O3	MAPbI3-xClx	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	12.5
Suarez, B. et al., J. Phys. Chem. Lett. 5, 1628–1635 (2014)	2014	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	10.9
Suarez, B. et al., J. Phys. Chem. Lett. 5, 1628–1635 (2014)	2014	TiO2	0	MAPb(I1- xBrx)3-yCly	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	3.9

Suarez, B. et al., J. Phys. Chem. Lett. 5, 1628–1635 (2014)	2014	TiO2	mTiO2	MAPb(I1- xBrx)3-yCly	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	9.1
Wang, J. T. W. et al., Nano Lett. 14, 724– 730 (2014)	2014	0	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	3.7
Wang, J. T. W. et al., Nano Lett. 14, 724– 730 (2014)	2014	TiO2	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	14.1
Wang, J. T. W. et al., Nano Lett. 14, 724– 730 (2014)	2014	TiO2	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.6
Wang, J. T. W. et al., Nano Lett. 14, 724– 730 (2014)	2014	graphe ne	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	5.9
Wang, X. et al., Mater. Sci. Semicond. Process. 27, 569–576 (2014)	2014	0	mTiO2	MAPbI3	one-step	spin	no	GBL	РЗНТ	Li+TBP	1.3
Wang, X. et al., Mater. Sci. Semicond. Process. 27, 569–576 (2014)	2014	TiO2	mTiO2	MAPbI3	one-step	spin	no	GBL	РЗНТ	Li+TBP	3.2
Wang, J. et al., Chem. Commun. 50, 5829 (2014)	2014	TiO2	mTiO2	MAPbI3	one-step	spin	no	GBL	2TPA-2-DP	no	9.1
Wang, J. et al., Chem. Commun. 50, 5829 (2014)	2014	TiO2	mTiO2	MAPbI3	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	10.2
Wojciechowski, K. et al., Energy Environ. Sci. 7, 1142–1147 (2014)	2014	TiO2	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.9
Wu, Y. et al., Appl. Phys. Express 7, 052301 (2014)	2014	0	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	0.3

Wu, Y. et al., Appl. Phys. Express 7, 052301 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	12.6
Xiao, M. et al., Angew. Chemie 126, 10056–10061 (2014)	2014	TiO2	0	MAPbl3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	16.2
Xiao, M. et al., Angew. Chemie 126, 10056–10061 (2014)	2014	TiO2	0	MAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	1.8
Xiao, J. et al., RSC Adv. 4, 32918 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	PNBA	no	11.4
Xu, Y. et al., ACS Appl. Mater. Interfaces 6, 5651– 5656 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin 2-3- dip	no	DMF	no	no	6.7
Xu, Y. et al., ACS Appl. Mater. Interfaces 6, 5651– 5656 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin 2-3- dip	no	DMF	no	no	5.7
Yella, A. et al., Nano Lett. 14, 2591–2596 (2014)	2014	TiO2	0	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.7
Zhang, H. et al., Chem. Commun. 50, 5020 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	na	spiro-OMeTAD	no	4
Zhang, H. et al., Chem. Commun. 50, 5020 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	na	spiro-OMeTAD	Li+TBP	8.4
Zhang, H. et al., Chem. Commun. 50, 5020 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	na	spiro-OMeTAD	BuPylm- TFSI	8.2
Zhang, F. et al., ACS Appl. Mater. Interfaces 6, 16140–	2014	TiO2	mTiO2	MAPbl3	one-step	spin	no	GBL	no	no	8.3

16146 (2014)											
Zhao, Y. et al., Appl. Phys. Lett. 104, 213906 (2014)	2014	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12.4
Zhao, Y. et al., Appl. Phys. Lett. 104, 213906 (2014)	2014	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12
Zhao, Y. et al., Appl. Phys. Lett. 104, 213906 (2014)	2014	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	11.4
Zhao, Y. et al., Faraday Discuss. 176, 301– 312 (2014)	2014	TiO2	mTiO2	MAPbBr3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	4.1
Zhao, Y. et al., Faraday Discuss. 176, 301– 312 (2014)	2014	TiO2	mTiO2	MAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	9.2
Zhao, Y. et al., Faraday Discuss. 176, 301–312 (2014)	2014	TiO2	mTiO2	MAPbl2Br	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	6.8
Zhao, Y. et al., Faraday Discuss. 176, 301– 312 (2014)	2014	TiO2	mTiO2	MAPbIBr2	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	4.7
Zheng, L. et al., Chem. Commun. 50, 11196–11199 (2014)	2014	TiO2	0	MAPbl3-xClx	two-step	spin-dip	no	DMF	DR3TBDTT- PDMS	no	8.8
Zheng, L. et al., Chem. Commun. 50, 11196–11199 (2014)	2014	TiO2	0	MAPbl3-xClx	two-step	spin-dip	no	DMF	DR3TBDTT	no	4.9
Zheng, L. et al., Chem. Commun. 50, 11196–11199 (2014)	2014	TiO2	0	MAPbl3-xClx	two-step	spin-dip	no	DMF	DR3TBDTT	Li+TBP	3.7

Zheng, L. et al., Chem. Commun. 50, 11196–11199 (2014)	2014	TiO2	0	MAPbI3-xClx	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	8.9
Zhou, H. et al., J. Phys. Chem. Lett. 5, 3241–3246 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	no	no	9.1
Zhou, H. et al., Science 345, 542- 546 (2014)	2014	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	19.3
Zhu, Z. et al., J. Am. Chem. Soc. 136, 3760–3763 (2014)	2014	TiO2	mTiO2	MAPb13	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	8.8
Zhu, Z. et al., J. Am. Chem. Soc. 136, 3760–3763 (2014)	2014	TiO2	mTiO2	MAPb13	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	10.2
Zhu, Z. et al., Adv. Funct. Mater. 24, 7357–7365 (2014)	2014	TiO2	mTiO2	MAPbI3	one-step	spin	no	DMF	TFB	Li+TBP	10.9
Zhu, Z. et al., Adv. Funct. Mater. 24, 7357–7365 (2014)	2014	TiO2	mTiO2	MAPbI3	one-step	spin	no	DMF	PFB	Li+TBP	8
Zhu, Z. et al., Adv. Funct. Mater. 24, 7357–7365 (2014)	2014	TiO2	mTiO2	MAPbI3	one-step	spin	no	DMF	PFO	Li+TBP	1.2
Zhu, Z. et al., Adv. Funct. Mater. 24, 7357–7365 (2014)	2014	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	TFB	Li+TBP	12.8
Zhu, Z. et al., Adv. Funct. Mater. 24, 7357–7365 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	PFB	Li+TBP	8.8
Zhu, Z. et al., Adv. Funct. Mater. 24, 7357–7365 (2014)	2014	TiO2	mTiO2	MAPbi3	two-step	spin-dip	no	DMF	PFO	Li+TBP	1.6

Zhu, Z. et al., Adv. Funct. Mater. 24, 7357–7365 (2014)	2014	TiO2	mTiO2	MAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	9.8
Zhu, Z. et al., Adv. Funct. Mater. 24, 7357–7365 (2014)	2014	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.6
Adli, H. K. et al., J. Phys. Chem. C 119, 22304–22309 (2015)	2015	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	8.8
Aharon, S. et al., J. Mater. Chem. A 3, 9171– 9178 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	no	no	7.7
Aharon, S. et al., J. Mater. Chem. A 3, 9171–9178 (2015)	2015	TiO2	mTiO2	FAPbl3	two-step	spin-dip	no	DMF	no	no	3.9
Ahn, N. et al., J. Am. Chem. Soc. 137, 8696–8699 (2015)	2015	TiO2	mTiO2	MAPb13	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.7
Bansode, U. et al., J. Phys. Chem. C 119, 9177–9185 (2015)	2015	ZnO	0	MAPbI3-xClx	one-step	PLD	no	na	spiro-OMeTAD	Li+TBP	7.7
Bera, A. et al., ACS Appl. Mater. Interfaces 7, 12404– 12411 (2015)	2015	Zn2SnO4	mZn2SnO 4	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.3
Bera, A. et al., ACS Appl. Mater. Interfaces 7, 12404– 12411 (2015)	2015	TiO2	mZn2Sn O4	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	7.1
Bi, H. and Zhang, Y., Mater. Lett. 161, 767–769 (2015)	2015	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	РСВМ	no	5.1
Bi, H. and Zhang, Y., Mater. Lett. 161, 767–769 (2015)	2015	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	PCBM	Li+TBP	9.7

Bi, D. et al., ACS Photonics 2, 589– 594 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.9
Bu, L. et al., ACS Appl. Mater. Interfaces 7, 17776– 17781 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.4
Bu, L. et al., ACS Appl. Mater. Interfaces 7, 17776– 17781 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	10.1
Cai, B. et al., Chinese J. Catal. 36, 1183–1190 (2015)	2015	TiO2	0	MAPbI3	one-step	spin 2-3	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	7.9
Cai, B. et al., Cuihua Xuebao/Chinese J. Catal. 36, 1183–1190 (2015)	2015	TiO2	0	MAPbI3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	16.5
Cai, B. et al., Chinese J. Catal. 36, 1183–1190 (2015)	2015	TiO2	0	MAPbI3	one-step	spin 2-3	chlorobenzene	DMSO	spiro-OMeTAD	Li+TBP	15.1
Cai, B. et al., Chinese J. Catal. 36, 1183–1190 (2015)	2015	TiO2	0	MAPbl3	one-step	spin 2-3	chlorobenzene	DMSO+GBL	spiro-OMeTAD	Li+TBP	14.1
Cai, B. et al., Chinese J. Catal. 36, 1183–1190 (2015)	2015	TiO2	0	MAPbl3	one-step	spin 2-3	chlorobenzene	GBL	spiro-OMeTAD	Li+TBP	9
Cao, D. H. et al., J. Am. Chem. Soc. 137, 7843–7850 (2015)	2015	TiO2	mTiO2	(CH3(CH2)3 NH3)2(MA)2 Pb3I10	one-step	spin	no	DMF	no	no	3.5
Cao, D. H. et al., J. Am. Chem. Soc. 137, 7843–7850 (2015)	2015	TiO2	mTiO2	MAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	2.4

Cao, D. H. et al., J. Am. Chem. Soc. 137,				(CH3(CH2)3							
7843–7850 (2015)	2015	TiO2	mTiO2	NH3)2(MA)2	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	4
				Pb3I10							
Cao, K. et al., Nano Energy 17, 171–179						infiltratio					
(2015)	2015	TiO2	mAl2O3	MAPbI3	two-step	n	no	DMF	no	no	15
						-dip					
Cao, K. et al., Nano Energy 17, 171–179						infiltratio					
(2015)	2015	TiO2	mAl2O3	MAPbI3	two-step	n	no	DMF	no	no	11.2
						-dip					
Cao, J. et al., J. Am. Chem. Soc. 137,											
10914–10917 (2015)	2015	TiO2	0	MAPbI3	two-step	spin-dip	no	DMF	TSHBC	no	12.8
Cao, J. et al., J. Am. Chem. Soc. 137,											
10914–10917 (2015)	2015	TiO2	0	MAPbl3	two-step	spin-dip	no	DMF	TSHBC	graphene	14
Casaluci S. et al. J. Power Sources 297											
504–510 (2015)	2015	TiO2	0	MAPbl3	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	12.7
Casaluci, S. et al., J. Power Sources 297,	2015	TiO2	mΤiΩ2	MAPbl3	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	10
504–510 (2015)	2010	1102	111102			vuop	no	Biiii		LITER	10
Casaluci, S. et al., J. Power Sources 297,											
504–510 (2015)	2015	TiO2	0	MAPbI3	two-step	vasp	no	DMSO	spiro-OMeTAD	Li+TBP	11
Chang, C. Y. et al., ACS Appl. Mater.											
Interfaces 7, 4955–	2015	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10.6
4961 (2015)											
Chang, C. Y. et al., ACS Appl. Mater.											
Interfaces 7, 4955–	2015	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF+PEG	spiro-OMeTAD	Li+TBP	13.2
4961 (2015)											

Chen, H. et al., Nano Energy 15, 216–226 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	no	no	10.4
Chen, H. et al., Nano Energy 15, 216–226 (2015)	2015	TiO2	mTiO2	MAPb13	two-step	electrod e position- dip	no	na	no	no	10.2
Chen, B. et al., Nano Energy 13, 582–591 (2015)	2015	TiO2	0	MAPb13	two-step	spin	no	DMF	no	no	0.3
Chen, B. et al., Nano Energy 13, 582–591 (2015)	2015	TiO2	0	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	13.5
Chen, B. et al., Nano Energy 13, 582–591 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	13
Cheng, Y. et al., ACS Appl. Mater. Interfaces 7, 19986– 19993 (2015)	2015	ZnO	0	МАРЫЗ	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	2.9
Cheng, Y. et al., ACS Appl. Mater. Interfaces 7, 19986– 19993 (2015)	2015	ZnO	0	MAPb13	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	5.4
Cheng, Y. et al., ACS Appl. Mater. Interfaces 7, 19986– 19993 (2015)	2015	ZnO	PEI	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10.2
Cheng, Y. et al., ACS Appl. Mater. Interfaces 7, 19986– 19993 (2015)	2015	ZnO	PCBM	МАРЫЗ	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	6.4

Cheng, M. et al.,Chem. Mater. 27, 1808–1814 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	POZ2	no	12.8
Cheng, M. et al., Chem. Mater. 27, 1808–1814 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	POZ3	no	11.5
Cheng, M. et al., Chem. Mater. 27, 1808–1814 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	12.8
Dao, V. D. et al., Thin Solid Films 593, 10– 16 (2015)	2015	TiO2	0	MAPb13	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	2.3
Dao, V. D. et al., Thin Solid Films 593, 10– 16 (2015)	2015	TiO2	mTiO2	MAPbI3	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	5.2
Das, S. et al., ACS Photonics 2, 680– 686 (2015)	2015	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13
Das, S. et al., ACS Photonics 2, 680– 686 (2015)	2015	TiO2	0	MAPbl3-xClx	one-step	spray	no	DMF	spiro-OMeTAD	Li+TBP	13
Dong, Q. et al., J. Phys. Chem. C 119, 10212– 10217 (2015)	2015	SnO2	mTiO2	MAPbl3	two-step	spin-dip	no	na	spiro-OMeTAD	Li+TBP	7.3
Dong, Q. et al., J. Phys. Chem. C 119, 10212–10217 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	na	spiro-OMeTAD	Li+TBP	13.9
Du, T. et al., ACS Appl. Mater. Interfaces 7, 3382– 3388 (2015)	2015	TiO2	0	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	5.8
Du, T. et al., ACS Appl. Mater. Interfaces 7, 3382– 3388 (2015)	2015	TiO2	0	MAPbl3	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	8.1

Fakharuddin, A. et al., J. Power Sources 283, 61–67 (2015)	2015	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12.1
Fakharuddin, A. et al., J. Power Sources 283, 61–67 (2015)	2015	TiO2	TiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12.2
Fakharuddin, A. et al., ACS Nano 9, 8420–8429 (2015)	2015	TiO2	0	MAPbI3-xClx	one-step	spin 2-3	no	DMF	spiro-OMeTAD	Li+TBP	5.8
Fakharuddin, A. et al., ACS Nano 9, 8420– 8429 (2015)	2015	TiO2	mTiO2	MAPbI3-xClx	one-step	spin 2-3	no	DMF	spiro-OMeTAD	Li+TBP	7.9
Fakharuddin, A. et al., ACS Nano 9, 8420–8429 (2015)	2015	0	TiO2	MAPbI3-xClx	one-step	spin 2-3	no	DMF	spiro-OMeTAD	Li+TBP	10.5
Gamliel, S. et al., J. Phys. Chem. C 119, 19722–19728 (2015)	2015	TiO2	0	MAPbI3	one-step	spray	no	DMF	no	no	6.9
Della Gaspera, E. et al., Nano Energy 13, 249–257 (2015)	2015	TiO2	0	MAPbI3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.6
Della Gaspera, E. et al., Nano Energy 13, 249–257 (2015)	2015	TiO2	0	MAPbi3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	1.2
Di Giacomo, F. et al., Adv. Energy Mater. 5, 1401808 (2015)	2015	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	7
Di Giacomo, F. et al., Adv. Energy Mater. 5, 1401808 (2015)	2015	0	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	2.2
Di Giacomo, F. et al., Adv. Energy Mater. 5, 1401808 (2015)	2015	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	9.9
Gu, Z. et al., Sol. Energy Mater. Sol. Cells 140, 396–404 (2015)	2015	0	CdS- nanorod	MAPb13	one-step	spin	no	GBL	no	no	8.36
---	------	------	-----------------	-------------	----------	----------	----	-----	--------------	--------------------------------	------
Gu, Z. et al., Sol. Energy Mater. Sol. Cells 140, 396–404 (2015)	2015	0	CdS- nanorod	МАРЫЗ	one-step	spin	no	GBL	РЗНТ	no	1
Gu, Z. et al., Sol. Energy Mater. Sol. Cells 140, 396–404 (2015)	2015	0	CdS- nanorod	МАРЫЗ	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	8.4
Guarnera, S. et al., J. Phys. Chem. Lett. 6, 432–437 (2015)	2015	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	H- TFSI+Et4N- TFSI	10.3
Guarnera, S. et al., J. Phys. Chem. Lett. 6, 432–437 (2015)	2015	TiO2	mAl2O3	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	H- TFSI+Et4N- TFSI+Al2O3	13.1
Han, G. S. et al., ACS Appl. Mater. Interfaces 7, 23521– 23526 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12.4
Han, G. S. et al., ACS Appl. Mater. Interfaces 7, 23521– 23526 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	14.5
Han, G. S. et al., J. Mater. Chem. A 3, 9160– 9164 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	12.7
Han, G. S. et al., J. Mater. Chem. A 3, 9160–9164 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	11.4

Hao, F. et al., J. Am. Chem. Soc. 137, 11445–11452 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	no	no	5.8
Hao, F. et al., J. Am. Chem. Soc. 137, 11445–11452 (2015)	2015	TiO2	mTiO2	MAPbl3	one-step	spin	no	DMSO+SnF2	no	no	3.2
Heo, J. H. et al., Nano Energy 15, 530–539 (2015)	2015	TiO2	0	MAPbl3	one-step	spin 2-3	no	GBL	ΡΤΑΑ	Li+TBP	5.7
Heo, J. H. et al., Nano Energy 15,530–539 (2015)	2015	TiO2	0	MAPbl3	one-step	spin 2-3	no	GBL	ΡΤΑΑ	Li+TBP	5
Heo, J. H. et al., Nano Energy 15, 530–539 (2015)	2015	TiO2	mAl2O3	MAPbl3	one-step	spin 2-3	no	GBL	ΡΤΑΑ	Li+TBP	3.2
Heo, J. H. et al., Nano Energy 15, 530–539 (2015)	2015	TiO2	mTiO2	MAPbI3	one-step	spin 2-3	no	GBL	ΡΤΑΑ	Li+TBP	15.7
Heo, J. H. et al., Nano Energy 15, 530–539 (2015)	2015	TiO2	mTiO2	MAPbI3	one-step	spin 2-3	no	GBL	ΡΤΑΑ	Li+TBP	17.2
Hong, S. et al., Curr. Appl. Phys. 15, 574– 579 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	12.8
Hou, Y. et al., Adv. Energy Mater. 5, 1500543 (2015)	2015	TiO2	0	MAPbl3	one-step	spin	chlorobenzene	DMF+DMSO	PEDOT	no	14.2
Hou, Y. et al., Adv. Energy Mater. 5, 1500543 (2015)	2015	TiO2	0	MAPbl3	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	16.4
Hou, Y. et al., Adv. Energy Mater. 5, 1500543 (2015)	2015	TiO2	0	MAPbl3	one-step	spin	chlorobenzene	DMF+DMSO	PEDOT	no	11.2

Huang, W. et al., Adv. Funct. Mater. 25, 5529– 5536 (2015)	2015	TiO2	0	MAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	14.3
Huang, W. et al., Adv. Funct. Mater. 25, 5529– 5536	2015	TiO2	mTiO2	MAPbI3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12
(2015)											
Huang, L. et al., Sol. Energy Mater. Sol. Cells											
141, 377–382	2015	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.6
(2015)											
Huang, L. et al., Sol. Energy Mater. Sol. Cells											
141, 377–382	2015	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	8.7
(2015)											
Huangfu, M. et al., Appl. Surf. Sci. 357, 2234–	2015	TiO2	mTiO2		ana stan	cnin	20	DME	Cul	20	59
2240 (2015)	2015	1102	111102		one-step	spin	no	DIVIE	Cui	no	5.0
Hwang, K. et al., Adv. Mater. 27,											
1241–1247 (2015)	2015	ZnO	0	MAPbl3	two-step	slot-die	no	DMF	РЗНТ	Li+TBP	12
Hwang, I. et al., ACS Appl. Mater.											
Interfaces 7, 17330–	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	11.8
17336 (2015)											
Hwang, I. et al., ACS Appl. Mater.											
Interfaces 7, 17330–	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	11.3
17336 (2015)											
Ito, S. et al., J. Phys. Chem. Lett. 6, 881–											
886 (2015)	2015	TiO2	0	MAPbl3	two-step	spin	no	DMF+DMSO	CuSCN	no	7.2
Ito, S. et al., J. Phys. Chem. Lett. 6, 881– 886 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF+DMSO	CuSCN	no	12

Ito, S. et al., J. Phys. Chem. Lett. 6, 881– 886 (2015)	2015	TiO2	0	MAPbI3	two-step	spin-dip	no	DMF+DMSO	CuSCN	no	0.1
Ito, S. et al., J. Phys. Chem. Lett. 6, 881– 886 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF+DMSO	CuSCN	no	9.9
Jeon, N. J. et al., Nature 517, 476–480 (2015)	2015	TiO2	mTiO2	(FAPbl3)0.8 5 (MAPbBr3)0. 15	one-step	spin 2-3	toluene	DMSO+GBL	ΡΤΑΑ	Li+TBP	19
Jeong, I. et al., Nano Energy 17, 131–139 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.1
Jiang, C. et al., ACS Appl. Mater. Interfaces 7, 24726– 24732 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.8
Jiang, C. et al., ACS Appl. Mater. Interfaces 7, 24726– 24732 (2015)	2015	TiO2	mTiO2	МАРЫЗ	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	15.6
Jin, Y. and Chumanov, G., ACS Appl. Mater. Interfaces 7, 12015– 12021 (2015)	2015	ZnO	0	MAPbI3	two-step	spin-dip	no	DMF	no	no	10.2
Kang, M. S. et al., ACS Appl. Mater. Interfaces 7, 22213– 22217 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	SGT-411	Li+TBP+FK 209	13
Kang, M. S. et al., ACS Appl. Mater. Interfaces 7, 22213– 22217 (2015)	2015	TiO2	mTiO2	МАРЫЗ	two-step	spin-dip	no	DMF	SGT-41no	Li+TBP+FK 209	12.6

Kang, M. S. et al., ACS Appl. Mater. Interfaces 7, 22213– 22217 (2015)	2015	TiO2	mTiO2	МАРЫЗ	two-step	spin-dip	no	DMF	SGT-4no9	Li+TBP+FK 209	11
Kang, M. S. et al., ACS Appl. Mater. Interfaces 7, 22213– 22217 (2015)	2015	TiO2	mTiO2	МАРЫЗ	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	13.8
Ke, W. et al., J. Am. Chem. Soc. 137, 6730–6733 (2015)	2015	SnO2	0	MAPbI3	two-step	spin 2-3- dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	17.2
Ke, W. et al., J. Am. Chem. Soc. 137, 6730–6733 (2015)	2015	TiO2	0	MAPbI3	two-step	spin 2-3- dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	15.2
Kim, G. Y. et al., J. Phys. Chem. Lett. 6, 2355–2362 (2015)	2015	TiO2	mTiO2	MAPbI3	one-step	spin	no	DMSO+GBL	spiro-OMeTAD	Li+TBP	10.6
Kim, G. Y. et al., J. Phys. Chem. Lett. 6,2355– 2362 (2015)	2015	TiO2	mTiO2	MAPbI3- xBrx	one-step	spin	no	DMSO+GBL	spiro-OMeTAD	Li+TBP	13.6
Lee, J. W. et al., Adv. Energy Mater. 5, 1501310 (2015)	2015	TiO2	0	FAPbl3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.4
Lee, J. W. et al., Adv. Energy Mater. 5, 1501310 (2015)	2015	TiO2	0	FA0.9Cs0.1 P bl3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	19
Li, F. et al., Mater. Lett. 157, 38–41 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	10.2
Li, F. et al., Mater. Lett. 157, 38–41 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin- spray	no	DMF	spiro-OMeTAD	Li+TBP	12.5

Li, W. et al., J. Am. Chem. Soc. 137, 10399–10405 (2015)	2015	TiO2	mTiO2	MAPb13	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.6
Li, W. et al., J. Am. Chem. Soc. 137, 10399–10405 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.2
Li, Y. et al., J. Phys. Chem. Lett. 6, 493– 499 (2015)	2015	TiO2	0	MAPb13	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	14.8
Li, Y. et al., J. Phys. Chem. Lett. 6, 493– 499 (2015)	2015	TiO2	0	MAPbl3-xClx	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	12.1
Li, Y. et al., J. Phys. Chem. Lett. 6, 493– 499 (2015)	2015	TiO2	0	MAPbI3-xClx	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	16.8
Li, Y. et al., J. Phys. Chem. Lett. 6, 493– 499 (2015)	2015	TiO2	0	MAPbI3-xClx	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	3.4
Li, Y. et al., RSC Adv. 5, 28424–28429 (2015)	2015	SnO2	mSnO2	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10.8
Li, Y. et al., J. Am. Chem. Soc. 137, 15540–15547 (2015)	2015	TiO2	0	MAPbI3-xClx	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	14.4
Li, Y. et al., J. Am. Chem. Soc. 137, 15540–15547 (2015)	2015	TiO2	PCBB- 2CN- 2C8	MAPbl3-xClx	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	17.4
Li, C. et al., ACS Appl. Mater. Interfaces 7, 15117– 15122 (2015)	2015	TiO2	0	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	10.7
Li, C. et al., ACS Appl. Mater. Interfaces 7, 15117–	2015	TiO2	0	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	10.7

15122 (2015)											
Listorti, A. et al., J. Phys. Chem. Lett. 6, 1628– 1637 (2015)	2015	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	9.3
Listorti, A. et al., J. Phys. Chem. Lett. 6, 1628– 1637 (2015)	2015	TiO2	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	9.8
Listorti, A. et al., J.Phys. Chem. Lett. 6, 1628– 1637 (2015)	2015	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	8.7
Liu, D. et al., ACS Appl. Mater. Interfaces 7, 16330– 16337 (2015)	2015	TiO2	mTiO2	MAPbI3-xCIx	one-step	spin- TSA	no	DMF	spiro-OMeTAD	Li+TBP	14.1
Liu, D. et al., ACS Appl. Mater. Interfaces 7, 16330– 16337 (2015)	2015	TiO2	mTiO2	MAPbI3-xClx	one-step	spin- OTA	no	DMF	spiro-OMeTAD	Li+TBP	9
Liu, D. et al., ACS Appl. Mater. Interfaces 7, 16330– 16337 (2015)	2015	TiO2	mTiO2	MAPbI3-xClx	one-step	spin- OSA	no	DMF	spiro-OMeTAD	Li+TBP	10.2
Liu, J. et al., J. Phys. Chem. Lett. 6, 1666– 1673 (2015)	2015	TiO2	mAl2O3	MAPbI3-xClx	one-step	spin	no	DMF	no	no	6.5
Liu, J. et al., J. Phys. Chem. Lett. 6, 1666– 1673 (2015)	2015	TiO2	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF	PEDOT	no	14.5
Liu, J. et al., J. Phys. Chem. Lett. 6, 1666– 1673 (2015)	2015	TiO2	mAl2O3	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12.6

Liu, C. et al., ACS Appl. Mater. Interfaces 7, 1153– 1159 (2015)	2015	TiO2	0	MAPbl3	two-step	spin	no	DMF	РЗНТ	no	7.1
Liu, C. et al., ACS Appl. Mater. Interfaces 7, 1153– 1159 (2015)	2015	TiO2	РСВМ	MAPb13	two-step	spin	no	DMF	РЗНТ	no	14.6
Liu, C. et al., ACS Appl. Mater. Interfaces 7, 1153– 1159 (2015)	2015	TiO2	РСВМ	МАРЫЗ	two-step	spin	no	DMF	РЗНТ	no	13.2
Liu, C. et al., ACS Appl. Mater. Interfaces 7, 9066– 9071 (2015)	2015	TiO2	0	MAPbl3	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	10.2
Liu, C. et al., ACS Appl. Mater. Interfaces 7, 9066– 9071 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	7.7
Liu, J. et al., J. Mater. Chem. A 3, 11750– 11755 (2015)	2015	TiO2	0	MAPbl3	one-step	spin	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	12.8
Liu, J. et al., J. Mater. Chem. A 3, 11750– 11755 (2015)	2015	CdS	0	MAPbl3	one-step	spin	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	11.2
Liu, J. et al., J. Mater. Chem. A 3, 11750– 11755 (2015)	2015	ZnS	0	MAPbl3	one-step	spin	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	1
Liu, J. et al., J. Mater. Chem. A 3, 11750– 11755 (2015)	2015	no	no	MAPbl3	one-step	spin	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	3.6
Liu, Z. et al., Dalt. Trans. 44, 3967– 3973 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	mNiO	no	11.4

Liu, Z. et al., Dalt. Trans. 44, 3967– 3973 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	ZrO2	no	8.2
Luo, Q. et al., J. Mater. Chem. A 3, 15996– 16004 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	RGO-1	no	9.3
Luo, Q. et al., J. Mater. Chem. A 3, 15996–16004 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	RGO-2	no	8.3
Luo, Q. et al., J. Mater. Chem. A 3, 15996– 16004 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	RGO-3	no	7
Luo, Q. et al., J. Mater. Chem. A 3, 15996– 16004 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	GO	no	5.5
Luo, Q. et al., J. Mater. Chem. A 3, 15996–16004 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	no	5.9
Luo, Q. et al., J. Mater. Chem. A 3, 15996– 16004 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.3
Luo, P. et al., ACS Appl. Mater. Interfaces 7, 2708– 2714 (2015)	2015	TiO2	0	MAPbI3	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	3.6
Luo, P. et al., ACS Appl. Mater. Interfaces 7, 2708– 2714 (2015)	2015	TiO2	0	МАРЫЗ	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	10.5
Luo, P. et al., ACS Appl. Mater. Interfaces 7, 2708– 2714 (2015)	2015	TiO2	0	МАРЫЗ	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	12.7

Lv, M. et al., ACS Appl. Mater. Interfaces 7, 17482– 17488 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF	no	no	5.7
Lv, M. et al., ACS Appl. Mater. Interfaces 7, 17482– 17488 (2015)	2015	TiO2	mTiO2	MAPb13	two-step	spin	no	DMF	CulnS2/ZnS	no	8.4
Lv, M. et al., ACS Appl. Mater. Interfaces 7, 17482– 17488 (2015)	2015	TiO2	mTiO2	МАРЫЗ	two-step	spin	no	DMF	CulnS2	no	6.6
Lv, M. et al., ACS Appl. Mater. Interfaces 7, 17482– 17488 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.9
Ma, Y. et al., ACS Appl. Mater. Interfaces 7, 6406–6411 (2015)	2015	TiO2	0	MAPbI3-xClx	two-step	spin-dip	no	DMF	no	no	3.4
Ma, Y. et al., ACS Appl. Mater. Interfaces 7, 6406– 6411 (2015)	2015	TiO2	0	MAPbl3-xClx	two-step	spin-dip	no	DMF	TPD	no	7.1
Ma, Y. et al., ACS Appl. Mater. Interfaces 7, 6406– 6411 (2015)	2015	TiO2	0	MAPbl3-xClx	two-step	spin-dip	no	DMF	TPD	no	3.2
Mahmood, K. et al., Adv. Energy Mater. 5, 1500568 (2015)	2015	ZnO	N-ZnO- nanorod	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16.2
Mahmood, K. et al., Adv. Energy Mater. 5, 1500568 (2015)	2015	ZnO	ZnO- nanorod	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.5
Mali, S. S. et al., Chem. Mater. 27, 1541–1551 (2015)	2015	TiO2	mTiO2	MAPbl3	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	10

Mali, S. S. et al., Chem. Mater. 27, 1541–1551 (2015)	2015	TiO2	TiO2	MAPbl3	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	13.8
Mali, S. S. et al., Chem. Mater. 27, 1541–1551 (2015)	2015	TiO2	TiO2	MAPbl3	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	10
Matteocci, F. et al., ACS Appl. Mater. Interfaces 7, 26176– 26183 (2015)	2015	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	7.4
Matteocci, F. et al., ACS Appl. Mater. Interfaces 7, 26176– 26183 (2015)	2015	TiO2	mTiO2	МАРЫЗ	two-step	blade- dip	no	DMF	spiro-OMeTAD	Li+TBP	11.9
Matteocci, F. et al., ACS Appl. Mater. Interfaces 7, 26176– 26183 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.3
Matteocci, F. et al., ACS Appl. Mater. Interfaces 7, 26176– 26183 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	9.7
Nejand, B. A. et al., ACS Appl. Mater. Interfaces 7, 21807– 21818 (2015)	2015	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	NiOx	no	1.3
Nejand, B. A. et al., ACS Appl. Mater. Interfaces 7, 21807– 21818 (2015)	2015	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	8.2
Peng, Y. et al., J. Mater. Chem. A 3, 12436–12442 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	14.1
Raga, S. R. et al., Chem. Mater. 27, 1597–1603 (2015)	2015	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12.5

Raga, S. R. et al.,Chem. Mater. 27, 1597–1603 (2015)	2015	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	9
Raga, S. R. et al., Chem. Mater. 27, 1597–1603 (2015)	2015	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	8.7
Raga, S. R. et al., Chem. Mater. 27, 1597–1603 (2015)	2015	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12.1
Raga, S. R. et al., Chem. Mater. 27, 1597–1603 (2015)	2015	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	8.3
Rakstys, K. et al., J. Am. Chem. Soc. 137, 16172–16178 (2015)	2015	TiO2	mTiO2	(FAPbl3)0.8 5 (MAPbBr3)	one-step	spin 2-3	chlorobenzene	DMF+DMSO	KR131	Li+TBP+FK 209	18.3
Rakstys, K. et al., J. Am. Chem. Soc. 137, 16172–16178 (2015)	2015	TiO2	mTiO2	(FAPbl3)0.8 5 (MAPbBr3)	one-step	spin 2-3	chlorobenzene	DMF+DMSO	KR133	Li+TBP+FK 209	16.8
Rakstys, K. et al., J. Am. Chem. Soc. 137, 16172–16178 (2015)	2015	TiO2	mTiO2	(FAPbl3)0.8 5 (MAPbBr3)	one-step	spin 2-3	chlorobenzene	DMF+DMSO	KR145	Li+TBP+FK 209	11.9
Rakstys, K. et al., J. Am. Chem. Soc. 137, 16172–16178 (2015)	2015	TiO2	mTiO2	(FAPbl3)0.8 5 (MAPbBr3)	one-step	spin 2-3	chlorobenzene	DMF+DMSO	KR122	Li+TBP+FK 209	9
Rakstys, K. et al., J. Am. Chem. Soc. 137, 16172–16178 (2015)	2015	TiO2	mTiO2	(FAPbl3)0.8 5 (MAPbBr3)	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	17.9
Razza, S. et al., J. Power Sources 277, 286–291 (2015)	2015	TiO2	mTiO2	MAPb13	two-step	blade- dip	no	DMF	spiro-OMeTAD	Li+TBP	13.3
Razza, S. et al., J. Power Sources 277, 286–291 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13

Sabba, D. et al., J. Phys. Chem. C 119, 1763–1767 (2015)	2015	TiO2	mTiO2	CsSnl2.9Br0 . 1	one-step	spin	no	DMSO+SnF2	spiro-OMeTAD	Li+TBP	1.8
Sabba, D. et al., J. Phys. Chem. C 119, 1763– 1767 (2015)	2015	TiO2	mTiO2	CsSnI3	one-step	spin	no	DMSO+SnF2	spiro-OMeTAD	Li+TBP	1.7
Sabba, D. et al., J. Phys. Chem. C 119, 1763–1767 (2015)	2015	TiO2	mTiO2	CsSnBr3	one-step	spin	no	DMSO+SnF2	spiro-OMeTAD	Li+TBP	1
Seol, D. J. et al., ChemSusChem 8, 2414–2419 (2015)	2015	TiO2	0	FAPb13	two-step	spin 2-3- dip	no	DMF	spiro-OMeTAD	Li+TBP	12.2
Sepalage, G. A. et al., Adv. Funct. Mater. 25, 5650– 5661 (2015)	2015	TiO2	0	MAPbI3	one-step	spin	no	DMF	Cul	no	7.5
Sepalage, G. A. et al., Adv. Funct. Mater. 25, 5650– 5661 (2015)	2015	TiO2	0	MAPb13	one-step	spin	no	DMF	Cul	no	1.1
Sepalage, G. A. et al., Adv. Funct. Mater. 25, 5650–5661 (2015)	2015	TiO2	0	MAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.8
Sepalage, G. A. et al., Adv. Funct. Mater. 25, 5650– 5661 (2015)	2015	TiO2	0	MAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10.1
Sfyri, G. et al., Sol. Energy Mater. Sol. Cells 134, 60–63 (2015)	2015	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	no	2.8
Shen, P. S. et al., Sol. Energy 120, 345–356 (2015)	2015	TiO2	mTiO2	MAPb13	one-step	spin 2-3	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	11.8

Shi, Y. et al., J. Phys. Chem. C 119, 15868– 15873 (2015)	2015	TiO2	0	MAPbI3-xClx	one-step	spin 2-3	no	DMF	spiro-OMeTAD	Li+TBP	12.7
Shi, Y. et al., J. Phys. Chem. C 119, 15868– 15873 (2015)	2015	TiO2	mTiO2	MAPbl3-xClx	one-step	spin 2-3	no	DMF	spiro-OMeTAD	Li+TBP	7.9
Shi, Y. et al., J. Phys. Chem. C 119, 15868–15873 (2015)	2015	TiO2	0	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	6.8
Shi, Y. et al., J. Phys. Chem. C 119, 15868– 15873 (2015)	2015	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	14.1
Son, D. Y. et al., J. Phys. Chem. C 119, 10321–10328 (2015)	2015	0	ZnO- nanorod	MAPb13	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	14.4
Son, D. Y. et al., J. Phys. Chem. C 119, 10321–10328 (2015)	2015	0	ZnO- nanorod	MAPb13	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	11.7
Song, D. et al., J. Phys. Chem. C 119, 22812– 22819 (2015)	2015	TiO2	0	MAPb13	two-step	spin 2-3- dip	no	DMSO	spiro-OMeTAD	Li+TBP	16.4
Song, D. et al., J. Phys. Chem. C 119, 22812– 22819 (2015)	2015	TiO2	0	MAPb13	two-step	spin 2-3- dip	no	DMSO	spiro-OMeTAD	Li+TBP	17.5
Song, D. et al., J. Phys. Chem. C 119, 22812– 22819 (2015)	2015	TiO2	0	MAPb13	two-step	spin 2-3- dip	no	DMSO	spiro-OMeTAD	Li+TBP	16
Song, D. et al., J. Phys. Chem. C 119, 22812–22819 (2015)	2015	TiO2	0	MAPb13	two-step	spin 2-3- dip	no	DMSO	spiro-OMeTAD	Li+TBP	15.4
Song, D. et al., J. Phys. Chem. C 119, 22812– 22819 (2015)	2015	TiO2	0	MAPbl3	two-step	spin 2-3- dip	no	DMSO	spiro-OMeTAD	Li+TBP	6

Song, T. B. et al., Nano Energy 12, 494–500 (2015)	2015	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12.9
Song, T. B. et al., Nano Energy 12, 494–500 (2015)	2015	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.9
Song, T. B. et al., Nano Energy 12, 494–500 (2015)	2015	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	14.1
Song, T. B. et al.,Nano Energy 12, 494–500 (2015)	2015	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	14
Song, T. B. et al., Nano Energy 12, 494–500 (2015)	2015	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13
Sun, H. et al, Solid State Sci. 40, 60–66 (2015)	2015	TiO2	0	MAPbI3	one-step	spin	no	GBL	no	no	3.5
Sun, H. et al, Solid State Sci. 40, 60–66 (2015)	2015	TiO2	TiO2	MAPb13	one-step	spin	no	GBL	no	no	4.3
Sun, C. et al., Sol. Energy Mater. Sol. Cells 143, 360–368 (2015)	2015	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	9.9
Sung, S. et al., Nanoscale 7, 8898– 8906 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	17.2
Tao, H. et al., J. Power Sources 290, 144–152 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	9.6
Tao, H. et al., J. Power Sources 290, 144–152 (2015)	2015	0	TiO2	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	12.8

Tripathi, B. et al.,Sol. Energy Mater. Sol. Cells											
132, 615–622	2015	TiO2	mTiO2	MAPbl3	one-step	spin	no	GBL	no	no	1.1
(2015)											
Tripathi, B. et al.,Sol. Energy Mater. Sol. Cells											
132, 615–622	2015	TiO2	mTiO2	MAPbl3	one-step	spin	no	GBL	no	no	0.9
(2015)											
Tripathi, B. et al.,Sol. Energy Mater. Sol. Cells											
132, 615–622	2015	TiO2	mTiO2	MAPbl3	one-step	spin	no	GBL	no	no	0.3
(2015)											
Wang, Z. et al., Chem. Mater. 27,				FAPbI3 +							
7149–7155 (2015)	2015	TiO2	mTiO2	FACI	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.7
Wang, Z. et al., Chem. Mater. 27,											
7149–7155 (2015)	2015	TiO2	mTiO2	FAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	0.2
Wang, Z. et al., Chem. Mater. 27,											
7149–7155 (2015)	2015	TiO2	mTiO2	FAPbl3	one-step	spin	no	DMF+MACI	spiro-OMeTAD	Li+TBP	7
Wang, Z. et al., Chem. Mater. 27,											
7149–7155 (2015)	2015	TiO2	mTiO2	FAPbI3	one-step	spin	no	DMF+NH4CI	spiro-OMeTAD	Li+TBP	0.6
Wang, M. et al., Chem. Phys. Lett.			ZnO-								
639, 283–288 (2015)	2015	ZnO	nanorod	MAPbl3	two-step	spin-dip	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	6.6
Wang, M. et al., Chem. Phys. Lett. 639, 283–			ZnO-								
288 (2015)	2015	ZnO	nanorod	MAPbl3	two-step	spin-dip	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	4.3
Wang, J. Y. et al., ACS Appl. Mater. Interfaces											
7, 27676–	2015	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	P3HT	no	10.7
27684 (2015)											

Wang, J. Y. et al., ACS Appl. Mater. Interfaces 7, 27676– 27684 (2015)	2015	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	РЗНТ	no	8.7
Wang, H. et al., ACS Photonics 2, 849– 855 (2015)	2015	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	Rno1	Li+TBP	7.5
Wang, H. et al., ACS Photonics 2, 849– 855 (2015)	2015	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	7.7
Wang, H. et al., ACS Photonics 2, 849– 855 (2015)	2015	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	Rno1	Li+TBP+MY 11	12
Wang, H. et al., ACS Photonics 2, 849– 855 (2015)	2015	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+MY 11	12.2
Wang, F. et al., Adv. Funct. Mater. 25, 1120–1126 (2015)	2015	TiO2	0	FAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	6.1
Wang, F. et al., Adv. Funct. Mater. 25, 1120–1126 (2015)	2015	TiO2	0	FAPb13	one-step	spin	no	DMF+HCI	spiro-OMeTAD	Li+TBP	17.5
Wang, F. et al., Adv. Funct. Mater. 25, 1120–1126 (2015)	2015	TiO2	0	FAPb13	one-step	spin	no	DMF+HI	spiro-OMeTAD	Li+TBP	12.4
Wang, K. et al., J. Phys. Chem. Lett. 6, 755– 759 (2015)	2015	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	9.6
Wang, K. et al., J. Phys. Chem. Lett. 6, 755–759 (2015)	2015	WOx	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	9.4
Wei, H. et al., Carbon 93, 861–868 (2015)	2015	TiO2	0	MAPb13	two-step	spin 2-3- dip	no	DMF	no	no	13.5

Wei, H. et al., Carbon 93, 861–868 (2015)	2015	TiO2	0	MAPbI3	two-step	spin 2-3- dip	no	DMF	no	no	10.7
Werner, J. et al., Sol. Energy Mater. Sol. Cells 141, 407–413 (2015)	2015	TiO2	mTiO2	MAPbI3	one-step	spin 2-3	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	12.2
Werner, J. et al., Sol. Energy Mater. Sol. Cells 141, 407–413 (2015)	2015	TiO2	mTiO2	MAPbI3	one-step	spin 2-3	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	10.4
Wojciechowski, K. et al., J. Phys. Chem. Lett. 6, 2399–2405 (2015)	2015	C60	mAl2O3	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.5
Wojciechowski, K. et al., J. Phys. Chem. Lett. 6, 2399–2405 (2015)	2015	TiO2	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.9
Wojciechowski, K. et al., J. Phys. Chem. Lett. 6, 2399–2405 (2015)	2015	C60	0	MAPbI3-xClx	two-step	evap- spin	no	DMF	spiro-OMeTAD	Li+TBP	14.5
Wojciechowski, K. et al., J. Phys. Chem. Lett. 6, 2399–2405 (2015)	2015	TiO2	0	MAPbI3-xClx	two-step	evap- spin	no	DMF	spiro-OMeTAD	Li+TBP	13.6
Wozny, S. et al., Chem. Mater. 27, 4814–4820 (2015)	2015	TiO2	0	FAPbl3	one-step	spin 2-3	toluene	DMF	spiro-OMeTAD	Li+TBP	13.5
Wozny, S. et al., Chem. Mater. 27, 4814–4820 (2015)	2015	TiO2	0	FAPbl3	one-step	spin 2-3	toluene	DMF	spiro-OMeTAD	Li+TBP	13
Wozny, S. et al., Chem. Mater. 27, 4814–4820 (2015)	2015	TiO2	0	FAPbl3	one-step	spin 2-3	toluene	DMF	spiro-OMeTAD	Li+TBP	10.3

Wozny, S. et al., Chem. Mater. 27, 4814–4820 (2015)	2015	TiO2	0	FAPbl3	one-step	spin 2-3	toluene	DMF	spiro-OMeTAD	Li+TBP	16.6
Wu, Y. et al., ACS Appl. Mater. Interfaces 7, 20707– 20713 (2015)	2015	TiO2	mTiO2	MAPbI3	one-step	spin 2-3	toluene	DMSO	spiro-OMeTAD	Li+TBP+FK 102	16
Wu, N. et al., Appl. Surf. Sci. 357, 2372– 2377 (2015)	2015	TiO2	0	MAPbI3-xClx	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	11.1
Xia, X. et al., ACS Appl. Mater. Interfaces 7, 16907– 16912 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin- spray	no	DMF	spiro-OMeTAD	Li+TBP	16.2
Xie, Y. et al., ACS Appl. Mater. Interfaces 7, 12937– 12942 (2015)	2015	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.4
Xie, Y. et al., ACS Appl. Mater. Interfaces 7, 12937– 12942 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	11.1
Xu, X. et al., Nano Lett. 15, 6514–6520 (2015)	2015	TiO2	0	CI-FAPbl3	two-step	spin	no	na	spiro-OMeTAD	Li+TBP	15.3
Xu, X. et al., Nano Lett. 15, 6514–6520 (2015)	2015	no	no	CI-FAPbl3	two-step	spin	no	na	spiro-OMeTAD	Li+TBP	15.5
Yang, Z. et al., Nano Energy 15, 670–678 (2015)	2015	TiO2	0	MAPbl3	two-step	spin- contact	no	DMF	spiro-OMeTAD	Li+TBP	16
Yang, Y. and Wang, W., J. Power Sources 293, 577– 584 (2015)	2015	0	mTiO2	МАРЫЗ	one-step	spin	no	DMF	РЗНТ	Li+TBP	4.9

Yang, Y. and Wang, W., J. Power Sources	2015	0	mTiO2	MARhi2	ono ston	coin	20	DME	D2UT		1.0
584 (2015)	2015	0	IIIIOz	MAF DIS	one-step	spin	no	DMF	FJH		1.5
Yang, D. et al.,Energy Environ. Sci. 8, 3208–											
3214	2015	TiO2	0	MAPbl3-xClx	two-step	CVD	no	na	spiro-OMeTAD	Li+TBP	16.2
(2015)											
Yang, W. S. et al., Science 348, 1234– 1237 (2015)	2015	TiO2	mTiO2	FAPbl3	two-step	spin	no	DMF	ΡΤΑΑ	Li+TBP	15.6
Yang, W. S. et al., Science 348, 1234– 1237 (2015)	2015	TiO2	mTiO2	FAPbI3	two-step	spin	no	DMF+DMSO	ΡΤΑΑ	Li+TBP	20.1
Yang, L. et al., ACS Appl. Mater.											
Interfaces 7, 14614–	2015	TiO2	0	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	9.4
14619 (2015)											
Yang, L. et al., ACS Appl. Mater.											
Interfaces 7, 14614–	2015	TiO2	0	MAPbI3	two-step	spin-dip	no	DMF+HCI	spiro-OMeTAD	Li+TBP	15.2
14619 (2015)											
Yang, L. et al., ACS Appl. Mater.											
Interfaces 7, 14614–	2015	TiO2	0	MAPbI3	two-step	spin-dip	no	DMF+HI	spiro-OMeTAD	Li+TBP	12.2
14619 (2015)											
You, P. et al., Adv. Mater. 27, 3632–			_								
3638 (2015)	2015	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	14.6
You, P. et al., Adv. Mater. 27, 3632–											
3638 (2015)	2015	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12.4
Yu, J. C. et al., Adv. Mater. 27, 3492– 3500 (2015)	2015	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16.3

Yu, J. C. et al., Adv. Mater. 27, 3492– 3500 (2015)	2015	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12.8
Yue, Y. et al., J. Phys. Chem. C 119, 22847–22854 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	13.1
Yue, Y. et al., J. Phys. Chem. C 119, 22847– 22854 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	5.3
Yue, Y. et al., J. Phys. Chem. C 119, 22847–22854 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	14
Yue, Y. et al., J. Phys. Chem. C 119, 22847– 22854 (2015)	2015	TiO2	mTiO2	MAPbi3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	8
Zhang, T. et al., Nano Lett. 15, 3959– 3963 (2015)	2015	TiO2	0	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	17.2
Zhang, T. et al., Nano Lett. 15, 3959– 3963 (2015)	2015	TiO2	0	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	6.4
Zhang, J. and Pauporté, T., J. Phys. Chem. C 119,14919–14928 (2015)	2015	TiO2	0	MAPbi3	one-step	spin 2-3	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	6.7
Zhang, J. and Pauporté, T., J. Phys. Chem. C 119, 14919–14928 (2015)	2015	ZnO	0	МАРЫЗ	one-step	spin 2-3	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	15
Zhang, J. and Pauporté, T., J. Phys. Chem. C 119, 14919–14928 (2015)	2015	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	9.4
Zhang, J. and Pauporté, T., J. Phys. Chem. C 119, 14919–14928 (2015)	2015	TiO2	0	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	3.8

Zhang, J. and Pauporté, T., J. Phys. Chem. C 119, 14919–14928 (2015)	2015	ZnO	0	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	10.9
Zhang, J. and Pauporté, T., J. Phys. Chem. C 119, 14919–14928 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	6.3
Zhang, H. et al., J. Energy Chem. 24, 729–735 (2015)	2015	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	16.1
Zhang, M. et al., Chem. Commun. 51, 10038–10041 (2015)	2015	TiO2	0	MAPbBr3	one-step	blowdry	no	DMF	РЗНТ	no	10.2
Zhang, M. et al., Chem. Commun. 51, 10038–10041 (2015)	2015	TiO2	0	MAPbBr3	one-step	spin	no	DMF	РЗНТ	no	4.8
Zhang, Z. et al., Sol. Energy 122, 97–103 (2015)	2015	TiO2	mTiO2	MAPb13	two-step	spin	no	DMF+IPA	spiro-OMeTAD	Li+TBP	12.2
Zhang, Z. et al., Sol. Energy 122, 97–103 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF+IPA	spiro-OMeTAD	Li+TBP	12.5
Zhang, Y. et al., J. Power Sources 274, 1224–1230 (2015)	2015	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	no	no	3.5
Zhang, Y. et al., J. Power Sources 274, 1224–1230 (2015)	2015	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	РЗНТ	no	6.1
Zheng, X. et al., Nano Energy 17, 269–278 (2015)	2015	TiO2	mTiO2	MAPbBr3	one-step	spin 2-3	toluene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	8.3
Zheng, Y. C. et al., Chem. Mater. 27, 5116–5121 (2015)	2015	TiO2	0	MAPbi3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.1

Zheng, Y. C. et al., Chem. Mater. 27, 5116–5121 (2015)	2015	TiO2	0	MAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	1.6
Zhong, D. et al., Nano Energy 11, 409–418 (2015)	2015	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	11
Zhong, D. et al.,Nano Energy 11, 409–418 (2015)	2015	TiO2	TiO2	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	11.9
Zhong, D. et al., Nano Energy 11, 409–418 (2015)	2015	TiO2	TiO2	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	10.1
Zhou, Y. et al., J. Phys. Chem. Lett. 6, 2292– 2297 (2015)	2015	TiO2	0	MAPb13	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12.1
Zhou, Y. et al., J. Phys. Chem. Lett. 6, 2292– 2297 (2015)	2015	TiO2	mTiO2	MAPb13	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10.8
Zhou, H. et al., J. Phys. Chem. C 119, 4600– 4605 (2015)	2015	ZnO	0	MAPb13	two-step	spin-dip	no	DMF	no	no	8.7
Zhu, L. et al., Nano Energy 15, 540–548 (2015)	2015	TiO2	0	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	no	14
Zhu, L. et al., Nano Energy 15, 540–548 (2015)	2015	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	no	17.4
Zuo, L. et al., J. Am. Chem. Soc. 137, 2674–2679 (2015)	2015	ZnO	0	MAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li	12
Zuo, L. et al., J. Am. Chem. Soc. 137, 2674–2679 (2015)	2015	ZnO	C3-SAM	MAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li	15.7

Adhikari, N. et al., Nanoscale 8, 2693– 2703 (2016)	2016	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	9.3
Adhikari, N. et al., Nanoscale 8, 2693– 2703 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	12.4
Bae, S. et al., J. Phys. Chem. Lett. 7, 3091–3096 (2016)	2016	TiO2	mTiO2	MAPbl3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	14.3
Bai, S. et al., Electrochim. Acta 190, 775–779 (2016)	2016	TiO2	mTiO2	MAPb13	two-step	spin	no	DMF	no	no	12.5
Bai, S. et al., Electrochim. Acta 190, 775–779 (2016)	2016	TiO2	mTiO2	FAPbl3	two-step	spin	no	DMF	no	no	7.4
Bai, S. et al., Electrochim. Acta 190, 775–779 (2016)	2016	TiO2	mTiO2	FAxMA1- xPbl3	two-step	spin	no	DMF	no	no	13
Bai, Y. et al., ChemSusChem 9, 2686–2691 (2016)	2016	SnO2	0	MAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	17.7
Bai, Y. et al., ChemSusChem 9, 2686–2691 (2016)	2016	SnO2	0	MAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	15.7
Behrouznejad, F. et al., J. Mater. Chem. A 4, 13488–13498 (2016)	2016	TiO2	mTiO2	MAPbl3	one-step	spin	chlorobenzene	DMF	no	no	3.1
Behrouznejad, F. et al., J. Mater. Chem. A 4, 13488–13498 (2016)	2016	TiO2	mTiO2	MAPbl3	one-step	spin	chlorobenzene	DMF	no	no	2.6
Behrouznejad, F. et al., J. Mater. Chem. A 4, 13488–13498	2016	TiO2	mTiO2	MAPbl3	one-step	spin	chlorobenzene	DMF	no	no	0.2

(2016)											
Behrouznejad, F. et al., J. Mater. Chem. A 4, 13488–13498 (2016)	2016	TiO2	mTiO2	МАРЫЗ	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	16.5
Behrouznejad, F. et al., J. Mater. Chem. A 4, 13488–13498 (2016)	2016	TiO2	mTiO2	МАРЫЗ	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	16.4
Behrouznejad, F. et al., J. Mater. Chem. A 4, 13488–13498 (2016)	2016	TiO2	mTiO2	MAPbl3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	14.7
Besleaga, C. et al., J. Phys. Chem. Lett. 7, 5168–5175 (2016)	2016	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	diethyl ether	DMF+DMSO	no	no	5.9
Besleaga, C. et al., J. Phys. Chem. Lett. 7, 5168–5175 (2016)	2016	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	12
Besleaga, C. et al., J. Phys. Chem. Lett. 7, 5168–5175 (2016)	2016	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	11.6
Bi, D. et al., Sci. Adv. 2, e1501170– e1501170 (2016)	2016	TiO2	mTiO2	FAI, PbI2, MABr, and PbBr2	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	20.8
Chang, S. et al., ACS Appl. Mater. Interfaces 8, 8511– 8519 (2016)	2016	IBF-Ep	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	6.9
Chang, S. et al., ACS Appl. Mater. Interfaces 8, 8511– 8519 (2016)	2016	PCBM	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	2.5

Chaudhary, D. K. et al., RSC Adv. 6, 94731– 94738 (2016)	2016	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	РЗНТ	no	8.1
Chaudhary, D. K. et al., RSC Adv. 6, 94731–94738 (2016)	2016	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	РЗНТ	no	5.5
Chen, H. N. et al., Adv. Energy Mater. 6, 1502087 (2016)	2016	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	no	no	8.7
Chen, H. N. et al., Adv. Energy Mater. 6, 1502087 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF+cyclohe xane	no	no	14.4
Chen, X. et al., J. Mater. Chem. A 4, 6521– 6526 (2016)	2016	TiO2	0	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.3
Chen, X. et al., J.Mater. Chem. A 4, 6521– 6526 (2016)	2016	TiO2	TiO2	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	15.7
Chen, LC. et al., Mater. Sci. Semicond. Process. 56, 179–182 (2016)	2016	graphe ne	mTiO2	MAPbl3	one-step	spin	no	DMSO+GBL	spiro-OMeTAD	Li+TBP	6.9
Chen, H. W. et al., Sci. Rep. 6, 34319 (2016)	2016	TiO2	mTiO2	MAPbl3	one-step	spin	no	DMF	MEH-PPV	no	9.7
Chen, H. W. et al., Sci. Rep. 6, 34319 (2016)	2016	TiO2	0	MAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.3
Chen, H. W. et al., Sci. Rep. 6, 34319 (2016)	2016	TiO2	mTiO2	MAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12.3
Chen, H. W. et al., Sci. Rep. 6, 34319 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.4

Chen, BX. et al., J. Mater. Chem. A 4, 15662–15669 (2016)	2016	TiO2	0	MAPbl3	one-step	spin	toluene	DMSO	spiro-OMeTAD	Li+TBP	5.6
Chen, BX. et al., J. Mater. Chem. A 4, 15662–15669 (2016)	2016	TiO2	PS	MAPbl3	one-step	spin	toluene	DMSO	spiro-OMeTAD	Li+TBP	11.7
Cheng, N. et al., J. Power Sources 321, 71–75 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF	no	no	12.7
Cheng, N. et al., J. Power Sources 321, 71–75 (2016)	2016	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	no	no	9.9
Cheng, N. et al., J. Power Sources 319, 111–115 (2016)	2016	TiO2	0	MAPbI3	two-step	spin	chlorobenzene	DMF	spiro-OMeTAD	no	11.6
Cheng, N. et al., J. Power Sources 319, 111–115 (2016)	2016	TiO2	0	MAPbl3	two-step	spin	ethanol	DMF	spiro-OMeTAD	no	12.1
Cheng, N. et al., J. Power Sources 319, 111–115 (2016)	2016	TiO2	0	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	no	10.3
Cheng, N. et al., J. Power Sources 319, 111–115 (2016)	2016	TiO2	0	MAPbl3	two-step	spin	IPA	DMF	spiro-OMeTAD	no	11.2
Chiang, YH. et al., ChemSusChem 9, 2620–2627 (2016)	2016	TiO2	mTiO2	MAPb(SCN) xI3-x	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	12.7
Chiang, YH. et al., ChemSusChem 9, 2620–2627 (2016)	2016	TiO2	mTiO2	MAPbI3	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	11.3
Cohen, B. El et al., J. Phys. Chem. C 120, 142–147 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	no	no	10.3

Cohen, B. El et al., J. Phys. Chem. C 120, 142–147 (2016)	2016	TiO2	mTiO2	MAPb13	two-step	spin-dip	toluene	DMF	no	no	11.8
Cui, D. et al., J.Phys. Chem. C 120, 42–47 (2016)	2016	TiO2	0	MAPbBr3	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	3.5
Cui, D. et al., J. Phys. Chem. C 120, 42–47 (2016)	2016	TiO2	0	MAPbl3	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	12.8
Cui, D. et al., J. Phys. Chem. C 120, 42–47 (2016)	2016	TiO2	0	MAPbl3- xBrx	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	6.8
Cui, D. et al., J. Phys. Chem. C 120, 42–47 (2016)	2016	TiO2	0	MAPbl3- xBrx	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	4.1
Du, Y. et al., RSC Adv. 6, 83264–83272 (2016)	2016	TiO2	0	MAPbl3	two-step	CVD	no	na	РЗНТ	Li+TBP	11.2
Du, Y. et al., RSC Adv. 6, 101250– 101258 (2016)	2016	TiO2	0	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	10.4
Du, Y. et al., RSC Adv. 6, 101250– 101258 (2016)	2016	TiO2	0	MAPbl3	two-step	CVD	no	na	spiro-OMeTAD	Li+TBP	12.7
Duan, J. et al., Int. J. Energy Res. 40, 806–813 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	dipping	no	na	spiro-OMeTAD	Li+TBP	10.5
Duan, J. et al., Int. J. Energy Res. 40, 806–813 (2016)	2016	ZnO	mTiO2	MAPbl3	two-step	dipping	no	na	spiro-OMeTAD	Li+TBP	8
Duan, J. et al., Int. J. Energy Res. 40, 806–813 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	dipping	no	na	spiro-OMeTAD	Li+TBP	12.8

Dubey, A. et al, Sol. Energy Mater. Sol. Cells 145, 193–199 (2016)	2016	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	PDPP3T	no	12.3
Dubey, A. et al, Sol. Energy Mater. Sol. Cells 145, 193–199 (2016)	2016	TiO2	mTiO2	МАРЫЗ	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	12.3
Fei, C. et al., Nano Energy 27, 17–26 (2016)	2016	SnO2	0	MAPbl3	one-step	spin	ethylacetate	DMF	spiro-OMeTAD	Li+TBP	14
Fei, C. et al., Nano Energy 27, 17–26 (2016)	2016	SnO2	0	MAPbI3-xClx	one-step	spin	ethylacetate	DMF	spiro-OMeTAD	Li+TBP	17.2
Fernandes, S. L. et al., Mater. Lett. 181, 103– 107 (2016)	2016	Nb2O5	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	no	12.3
Fu, K. et al., Nanoscale 8, 4181– 4193 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	14.6
Gong, G. et al., J. Mater. Chem. A 4, 3661– 3666 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	DEPT-SC	no	9.7
Gong, G. et al., J. Mater. Chem. A 4, 3661– 3666 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	DOPT-SC	no	8.7
Gong, G. et al., J. Mater. Chem. A 4, 3661–3666 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	DHPT-SC	no	8.4
Gong, G. et al., J. Mater. Chem. A 4, 3661–3666 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	no	5.4
Gong, G. et al., Org. Electron. physics, Mater. Appl. 35, 171–	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	DEPT-SC	no	9.7

175 (2016)											
Gong, G. et al., Org. Electron. physics, Mater. Appl. 35, 171– 175 (2016)	2016	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	DEPT-SC	Li+TBP	5.2
Gong, G. et al., Org. Electron. physics, Mater. Appl. 35, 171– 175 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.2
Gong, G. et al., Org. Electron. physics, Mater. Appl. 35, 171– 175 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	DEPT-SC	F4TCNQ	11.5
Guerrero, A. et al., J. Phys. Chem. C 120, 8023–8032 (2016)	2016	SnO2	0	FA0.85MA0. 15Pb(I0.85B r 0.15)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	16.9
Guerrero, A. et al., J. Phys. Chem. C 120, 8023–8032 (2016)	2016	TiO2	0	FA0.85MA0. 15Pb(I0.85B r 0.15)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	9.8
Guerrero, A. et al., J. Phys. Chem. C 120, 8023–8032 (2016)	2016	Nb2O5	0	FA0.85MA0. 15Pb(I0.85B r 0.15)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	0.1
Guo, J. J. et al., Synth. Met. 220, 462–468 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	CoPcNO2-Oph	no	8.2

Guo, J. J. et al., Synth. Met. 220, 462–468 (2016)	2016	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	10.8
Guo, Y. et al., RSC Adv. 6, 62522–62528 (2016)	2016	ZnO	0	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	9.4
Hao, Q. et al., J. Alloys Compd. 671, 11–16 (2016)	2016	TiO2	0	MAPbl3	two-step	vasp	no	NEP	spiro-OMeTAD	Li+TBP	10.2
He, X. et al., J. Power Sources 332, 366–371 (2016)	2016	TiO2	mTiO2	MAPbl3	one-step	spin	diethyl ether	DMF	spiro-OMeTAD	Li+TBP	17.6
He, X. et al., J. Power Sources 332, 366–371 (2016)	2016	TiO2	mTiO2	MAPbI3	one-step	spin	diethyl ether	DMF	spiro-OMeTAD	Li+TBP	15.2
He, X. et al., J. Power Sources 332, 366–371 (2016)	2016	TiO2	mTiO2	MAPbI3	one-step	spin	diethyl ether	DMF	spiro-OMeTAD	Li+TBP	13.5
Heo, J. H. and Im, S. H., Nanoscale 8, 2554–2560 (2016)	2016	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF+HI	ΡΤΑΑ	Li+TBP	18.9
Hou, Y. et al., Sol. Energy Mater. Sol. Cells 155, 101–107 (2016)	2016	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	14
Hou, Y. et al., Sol. Energy Mater. Sol. Cells 155, 101–107 (2016)	2016	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	11.8
Hou, X. et al., Sol. Energy Mater. Sol. Cells 149, 121–127 (2016)	2016	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12

Hou, X. et al., Sol. Energy Mater. Sol. Cells 149, 121–127 (2016)	2016	TiO2	ZGO	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	14.3
Hu, Y. et al., J. Alloys Compd. 679, 32–38 (2016)	2016	TiO2	TiO2	MAPb13	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10.2
Hu, Y. et al., J. Alloys Compd. 679, 32–38 (2016)	2016	TiO2	TiO2	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	8
Huang, L. et al., Sol. Energy Mater. Sol. Cells 149, 1–8 (2016)	2016	TiO2	no	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12.3
Huang, L. et al., Sol. Energy Mater. Sol. Cells 149, 1–8 (2016)	2016	no	no	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10.7
Huang, F. et al., Nano Energy 27, 509–514 (2016)	2016	TiO2	0	MAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.8
Huang, Y. et al., Thin Solid Films 598, 1–5 (2016)	2016	TiO2	TiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	11.3
Huang, J. et al., RSC Adv. 6, 55720–55725 (2016)	2016	TiO2	0	MAPbI3	one-step	spin	no	DMF	spiro-OMeTAD	TFSI+TBP	12.1
Huang, J. et al., RSC Adv. 6, 55720–55725 (2016)	2016	TiO2	0	MAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	TFSI+TBP	12.7
Huang, J. et al., RSC Adv. 6, 55720–55725 (2016)	2016	TiO2	0	MAPbI3	one-step	spin	no	DMF+HBr	spiro-OMeTAD	TFSI+TBP	15.8
Huang, J. et al., RSC Adv. 6, 55720–55725 (2016)	2016	TiO2	0	MAPbi3	one-step	spin	no	DMF+HCI	spiro-OMeTAD	TFSI+TBP	13.7

Huang, J. et al., RSC Adv. 6, 55720–55725 (2016)	2016	TiO2	0	MAPbI3	one-step	spin	no	DMF+HI	spiro-OMeTAD	TFSI+TBP	14.4
Huang, J. et al., Sol. Energy 133, 331–338 (2016)	2016	ZnO	0	MAPbl3	two-step	CVD	no	na	spiro-OMeTAD	no	8.3
Huang, J. et al., Sol. Energy 133, 331–338 (2016)	2016	FPDI	0	MAPbl3	two-step	CVD	no	na	spiro-OMeTAD	no	7.9
Huang, H. et al., Nano Energy 27, 352–358 (2016)	2016	TiO2	mTiO2	MAPbI3	two-step	spray	no	DMSO	spiro-OMeTAD	Li+TBP+FK 209	16
Jain, S. M. et al., Energy Environ. Sci. 9, 3770–3782 (2016)	2016	TiO2	0	MAPbl3	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	18.5
Jain, S. M. et al., Energy Environ. Sci. 9, 3770–3782 (2016)	2016	TiO2	0	MAPbl3	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	9.5
Jeon, S. et al., Org. Electron. physics, Mater. Appl. 37, 134– 140 (2016)	2016	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	DPIO	no	10.1
Jeon, S. et al., Org. Electron. physics, Mater. Appl. 37, 134– 140 (2016)	2016	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	DPIE	no	5.4
Jeon, S. et al., Org. Electron. physics, Mater. Appl. 37, 134– 140 (2016)	2016	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	no	12
Jeon, S. et al., Org. Electron. physics, Mater. Appl. 37, 134– 140 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	no	7.9

Jeong, I. et al., Nano Energy 28, 380–389 (2016)	2016	TiO2	0	MAPbl3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.6
Jeong, I. et al., Nano Energy 28, 380–389 (2016)	2016	TiO2	0	MAPbl3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	15.5
Jiang, X. et al., J. Phys. Chem. Lett. 7, 4142–4146 (2016)	2016	0	mTiO2	MAPbl3	one-step	spin	no	GBL	no	no	12.3
Jiang, X. et al., J. Phys. Chem. Lett. 7, 4142– 4146 (2016)	2016	TiO2	mTiO2	MAPbI3	one-step	spin	no	GBL	no	no	12.7
Jiang, X. et al., J. Phys. Chem. Lett. 7, 4142–4146 (2016)	2016	0	mTiO2	(5- AVA)x(MA)1 - xPbl3	one-step	spin	no	GBL	no	no	12.9
Jiang, X. et al., J. Phys. Chem. Lett. 7, 4142– 4146 (2016)	2016	TiO2	mTiO2	(5- AVA)x(MA)1 - xPbl3	one-step	spin	no	GBL	no	no	13.3
Ke, W. et al., Adv. Mater. 28, 5214– 5221 (2016)	2016	SnO2	PCBM	MAPbl3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.8
Ke, W. et al., Adv. Mater. 28, 5214– 5221 (2016)	2016	SnO2	PCBM	MAPbl3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	16.4
Ke, W. et al., J. Mater. Chem. A 4, 14276– 14283 (2016)	2016	SnO2	0	MAPbl3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 102	16.9
Ke, W. et al., J. Mater. Chem. A 4, 14276–14283 (2016)	2016	SnO2	PCBM	MAPbl3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 102	19.1

Kim, I. S. et al., ACS Appl. Mater. Interfaces 8, 24310– 24314 (2016)	2016	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	14.3
Kim, A. et al., Nanoscale 8, 6308– 6316 (2016)	2016	ZnO	mAl2O3	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	11
Kim, J. et al., J. Phys. Chem. C 120, 11262–11267 (2016)	2016	TiO2	0	FAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	4
Kim, J. et al., J. Phys. Chem. C 120, 11262– 11267 (2016)	2016	TiO2	0	FAPbl3	one-step	spin	no	DMF+HI	spiro-OMeTAD	Li+TBP	16
Kulbak, M. et al., J. Phys. Chem. Lett. 6, 2452–2456 (2015)	2016	TiO2	mAl2O3	CsPbI3	two-step	spin-dip	no	DMF	no	no	1.1
Kulbak, M. et al., J. Phys. Chem. Lett. 6, 2452–2456 (2015)	2016	TiO2	mTiO2	CsPbI3	two-step	spin-dip	no	DMF	no	no	5.5
Kulbak, M. et al., J. Phys. Chem. Lett. 6, 2452–2456 (2015)	2016	TiO2	mTiO2	CsPbI3	two-step	spin-dip	no	DMF	СВР	no	4.9
Kulbak, M. et al., J. Phys. Chem. Lett. 7, 167–172 (2016)	2016	TiO2	mTiO2	MAPbBr3	two-step	spin-dip	no	DMF	ΡΤΑΑ	no	6.6
Kulbak, M. et al., J. Phys. Chem. Lett. 6, 2452–2456 (2015)	2016	TiO2	mTiO2	CsPbI3	two-step	spin-dip	no	DMF	ΡΤΑΑ	no	6
Kulbak, M. et al., J. Phys. Chem. Lett. 7, 167–172 (2016)	2016	TiO2	mTiO2	CsPbBr3	two-step	spin-dip	no	DMF	ΡΤΑΑ	no	6.2
Kulbak, M. et al., J. Phys. Chem. Lett. 6, 2452–2456 (2015)	2016	TiO2	mAl2O3	CsPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	1.9

Kulbak, M. et al., J. Phys. Chem. Lett. 6, 2452–2456 (2015)	2016	TiO2	mTiO2	CsPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	5
Kumar, Y. et al., Sol. Energy Mater. Sol. Cells 157, 10–17 (2016)	2016	TiO2	0	MAPbl3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	4.9
Kumar, Y. et al., Sol. Energy Mater. Sol. Cells 157, 10–17 (2016)	2016	TiO2	0	MAPbl3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	6.8
Kumar, Y. et al., Sol. Energy Mater. Sol. Cells 157, 10–17 (2016)	2016	TiO2	0	MAPbI3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	3.1
Lan, C. et al., CrystEngComm 18, 9243–9251 (2016)	2016	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	11.5
Lee, S. J. et al., J. Am. Chem. Soc. 138, 3974–3977 (2016)	2016	TiO2	mTiO2	FASnl3	one-step	spin 2-3	toluene	DMF+DMSO +SnF2	spiro-OMeTAD	lutidiene+TB P	2.8
Lee, S. J. et al., J. Am. Chem. Soc. 138, 3974–3977 (2016)	2016	TiO2	mTiO2	FASnl3	one-step	spin 2-3	toluene	DMF+DMSO +SnF2+pyrazi ne	spiro-OMeTAD	lutidiene+TB P	4.8
Lee, J. W. et al., Acc. Chem. Res. 49, 311– 319 (2016)	2016	TiO2	0	FAPbI3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	11.5
Lee, J. W. et al., Acc. Chem. Res. 49, 311– 319 (2016)	2016	TiO2	0	FAPbI3	one-step	spin	diethyl ether	DMF+DMSO +thiourea	spiro-OMeTAD	Li+TBP	14.3
Lei, Y. et al., J. Mater. Chem. A 4, 5474–5481 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	5
Lei, Y. et al., J. Mater. Chem. A 4, 5474–5481 (2016)	2016	ZnO	mZnO	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	8.8
---	------	------	-------	-------------	----------	----------	---------------	----------	--------------	--------	------
Leyden, M. R. et al., J. Mater. Chem. A 4, 13125–13132 (2016)	2016	TiO2	mTiO2	FAPbI3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.3
Leyden, M. R. et al., J. Mater. Chem. A 4, 13125–13132 (2016)	2016	TiO2	mTiO2	FAPb13	two-step	CVD	no	na	spiro-OMeTAD	Li+TBP	15.6
Li, H. et al., Nanoscale 8, 6379– 6385 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	no	no	14.7
Li, H. et al., Nanoscale 8, 6379– 6385 (2016)	2016	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	no	no	9.9
Li, H. et al., Nanoscale 8, 6379– 6385 (2016)	2016	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.3
Li, H. et al., Sol. Energy 126, 243–251 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	12.9
Li, M. et al, Adv. Energy Mater. 6, 1601156 (2016)	2016	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	no	14.8
Li, M. et al, Adv. Energy Mater. 6, 1601156 (2016)	2016	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	CuSCN	18
Li, M. et al, Adv. Energy Mater. 6, 1601156 (2016)	2016	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Cul	16.7
Li, M. et al., ChemSusChem 9, 2862–2869 (2016)	2016	TiO2	mTiO2	MAPbl3-xClx	one-step	spin 2-3	chlorobenzene	DMF	Chl-1	no	11.5

Li, M. et al., ChemSusChem 9, 2862–2869 (2016)	2016	TiO2	mTiO2	MAPbI3-xClx	one-step	spin 2-3	chlorobenzene	DMF	Chl-2	no	8.1
Li, M. et al., ChemSusChem 9, 2862–2869 (2016)	2016	TiO2	mTiO2	MAPbl3-xClx	one-step	spin 2-3	chlorobenzene	DMF	РЗНТ	Li+TBP	8.9
Li, X. et al., ACS Appl. Mater. Interfaces 8, 21358– 21365 (2016)	2016	TiO2	mTiO2	MAPb13	one-step	spin 2-3	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	16.4
Li, X. et al., ACS Appl. Mater. Interfaces 8, 21358– 21365 (2016)	2016	TiO2	TiO2	МАРЫЗ	one-step	spin 2-3	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	18.2
Li, J. et al., Nanoscale 8, 14163– 14170 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	no	no	12.3
Li, J. et al., Nanoscale 8, 14163– 14170 (2016)	2016	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	no	no	9.7
Li, F. et al., Chem. Commun. 52, 5394– 5397 (2016)	2016	TiO2	0	MAPbI3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.8
Li, F. et al., Chem. Commun. 52, 5394– 5397 (2016)	2016	TiO2	0	MAPb13	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	16.5
Li, F. et al., J. Mater. Chem. A 4, 11372– 11380 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin- spray	no	DMF	spiro-OMeTAD	Li+TBP	10.8
Li, F. et al., J. Mater. Chem. A 4, 11372– 11380 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin- spray	no	DMF	spiro-OMeTAD	Li+TBP	14.5
Li, F. et al., J. Mater. Chem. A 4, 11372– 11380 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin- spray	no	DMF	spiro-OMeTAD	Li+TBP	7.6

Li, Y. et al., J. Power Sources 320, 204– 211 (2016)	2016	ZnO	0	MAPbi3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.5
Liu, L. et al., Electrochim. Acta 222, 933–937 (2016)	2016	TiO2	TiO2	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12.6
Liu, L. et al., Electrochim. Acta 222, 933–937 (2016)	2016	TiO2	TiO2	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	8.5
Liu, D. et al., RSC Adv. 6, 51279–51285 (2016)	2016	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	14.3
Liu, Z. et al., Nanoscale 8, 7017– 7023 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	GBL	no	no	6.9
Liu, J. et al., Electrochim. Acta 195, 143–149 (2016)	2016	TiO2	0	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	9.9
Liu, J. et al., Electrochim. Acta 195, 143–149 (2016)	2016	TiO2	0	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	11.9
Luo, S. et al., Mater. Lett. 169, 236–240 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	5.4
Luo, S. et al., Mater. Lett. 169, 236–240 (2016)	2016	TiO2	mTiO2	MAPbI3-xClx	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	11
Mali, S. S. et al., Nanoscale 8, 2664– 2677 (2016)	2016	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	no	GBL	spiro-OMeTAD	Li+TBP	9.7
Mali, S. S. et al., Nanoscale 8, 2664– 2677 (2016)	2016	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	no	GBL	spiro-OMeTAD	Li+TBP	11.1

Mali, S. S. et al., Nanoscale 8, 2664– 2677 (2016)	2016	TiO2	TiO2	MAPbl3	one-step	spin 2-3	no	GBL	spiro-OMeTAD	Li+TBP	14.9
Mali, S. S. et al., Nanoscale 8, 2664– 2677 (2016)	2016	TiO2	TiO2	MAPbl3	one-step	spin 2-3	no	GBL	spiro-OMeTAD	Li+TBP	11.2
Marco, N. De et al., Nano Lett. 16, 1009– 1016 (2016)	2016	TiO2	0	MAPbl3-xClx	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16.4
Marco, N. De et al., Nano Lett. 16, 1009– 1016 (2016)	2016	TiO2	0	GA:MAPbl3- xClx	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	17.1
McMeekin, D. P. et al., Science 351, 151–5 (2016)	2016	SnO2	PCBM	FA0.83Cs0.1 7Pb(I0.6Br0. 4)3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	17.1
Murugadoss, G. et al., J. Power Sources 307, 891–897 (2016)	2016	SnO2	0	MAPbl3	two-step	spin	no	DMF	CuSCN	no	8.4
Nejand, B. A. et al., ChemSusChem 9, 302–313 (2016)	2016	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	Cu2O	no	4
Nejand, B. A. et al., ChemSusChem 9, 302–313 (2016)	2016	TiO2	mTiO2	MAPbl3-xClx	two-step	spin	no	DMF	Cu2O	no	8.9
Nejand, B. A. et al., ChemSusChem 9, 302–313 (2016)	2016	TiO2	mTiO2	MAPbI3-xClx	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	11.5
Nejand, B. A. et al., J. Phys. Chem. C 120, 2520–2528 (2016)	2016	TiO2	0	MAPbl3-xClx	one-step	sprayroll	no	DMF	spiro-OMeTAD	Li+TBP	13.2
Nejand, B. A. et al., J. Phys. Chem. C 120, 2520–2528 (2016)	2016	TiO2	0	MAPbI3-xClx	one-step	spray	no	DMF	spiro-OMeTAD	Li+TBP	8.2

Nejand, B. A. et al., Sci. Rep. 6, 33649 (2016)	2016	TiO2	mTiO2	MAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	11.3
Nejand, B. A. et al., Sci. Rep. 6, 33649 (2016)	2016	TiO2	mTiO2	MAPbl3	one-step	spray	no	na	spiro-OMeTAD	Li+TBP	9.1
Niu, G. et al., Nano Energy 27, 87–94 (2016)	2016	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	chlorobenzene	DMSO+GBL	spiro-OMeTAD	Li+TBP	15.1
Niu, G. et al., Nano Energy 27, 87–94 (2016)	2016	TiO2	mTiO2	(MAPbI3)0.9 (CsPbBr3)0.1	one-step	spin 2-3	chlorobenzene	DMSO+GBL	spiro-OMeTAD	Li+TBP	17.6
Nourolahi, H. et al., Sol. Energy 139,475–483 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	no	no	4.6
Nourolahi, H. et al., Sol. Energy 139, 475–483 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	no	no	6.2
Pascoe, A. R. et al., Adv. Funct. Mater. 26, 1278–1285 (2016)	2016	TiO2	mTiO2	MAPbI3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16.3
Pascoe, A. R. et al., Nano Energy 22, 439–452 (2016)	2016	TiO2	0	MAPbi3	one-step	spin	no	DMSO+GBL	spiro-OMeTAD	Li+TBP	14.2
Pascoe, A. R. et al., Nano Energy 22, 439–452 (2016)	2016	TiO2	0	MAPbl3	one-step	spin	no	DMSO+GBL	spiro-OMeTAD	Li+TBP	8.8
Pascoe, A. R. et al., Nano Energy 22, 439–452 (2016)	2016	TiO2	mAl2O3	MAPb13	one-step	spin	no	DMSO+GBL	spiro-OMeTAD	Li+TBP	10.6
Pascoe, A. R. et al., Nano Energy 22, 439–452 (2016)	2016	TiO2	mAl2O3	MAPbl3	one-step	spin	no	DMSO+GBL	spiro-OMeTAD	Li+TBP	4.9

Pascoe, A. R. et al., Nano Energy 22, 439–452 (2016)	2016	TiO2	mTiO2	MAPbI3	one-step	spin	no	DMSO+GBL	spiro-OMeTAD	Li+TBP	16
Pascoe, A. R. et al., Nano Energy 22, 439–452 (2016)	2016	TiO2	0	MAPbl3	one-step	spin	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	14
Pascoe, A. R. et al., Nano Energy 22, 439–452 (2016)	2016	TiO2	mTiO2	MAPb13	one-step	spin	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	10.2
Pearson, A. J. et al., Adv. Energy Mater. 6, 1600014 (2016)	2016	TiO2	mAl2O3	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	11.1
Peng, G. et al., J. Mater. Chem. A 4, 1520–1530 (2016)	2016	0	TiO2	MAPbI3	one-step	spin 2-3	no	GBL	spiro-OMeTAD	Li+TBP	12
Peng, G. et al., J. Mater. Chem. A 4, 1520– 1530 (2016)	2016	0	TiO2	MAPbl3	one-step	spin 2-3	no	GBL	spiro-OMeTAD	Li+TBP	10
Ramirez, D. et al., J. Phys. Chem. C 120, 8559–8567 (2016)	2016	TiO2	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10.9
Rapsomanikis, A. et al., Sol. Energy Mater. Sol. Cells 151, 36–43 (2016)	2016	TiO2	mTiO2	MAPbl3-xClx	one-step	spin 2-3	no	DMF	РЗНТ	Li+TBP	13.7
Ren, X. et al., Nanoscale 8, 3816– 3822 (2016)	2016	TiO2	0	MAPbl3	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	12.9
Reyna, Y. et al., Nano Energy 30, 570–579 (2016)	2016	TiO2	mTiO2	(FAPbl3)0.8 5 (MAPbBr3)0. 15	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	14.6
Saliba, M. et al., Energy Environ. Sci. 9, 1989–1997 (2016)	2016	TiO2	mTiO2	Cs5(MA0.17 FA0.83)95P	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	21.2

				b (I0.83Br0.17)							
				3							
Saliba, M. et al., Energy Environ. Sci. 9,				Cs10(MA0.1							
1989–1997 (2016)				7FA0.83)90						Li+TBP+FK	
	2016	TiO2	mTiO2	Р	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	209	21
				b(l0.83Br0.1							
				7)3							
Saliba, M. et al., Energy Environ. Sci.				(MA0.17FA0							
9, 1969–1997 (2016)	2016	TiO2	mTiO2	83)100Pb/I0	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	200	17.4
				83Br0 17)3						203	
Saliba, M. et al., Science 354, 206–				Pb/Cc/MA/E							
209 (2016)	2016	TiO2	mTiO2	A cations	one-step	spin 2-3	no	DMF+DMSO	spiro-OMeTAD	209	21.8
Sedighi, R. et al., ChemPhysChem 17,											
2382–2388 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	13.5
Sedighi, R. et al., ChemPhysChem 17,		Ŧioo	7.00	MAPbI3-				51/5			10.5
2382–2388 (2016)	2016	1102	m1iO2	xBrx	two-step	vasp	no	DMF	spiro-OMeTAD	LI+TBP	10.5
Sedighi, R. et al., ChemPhysChem 17,											
2382–2388 (2016)	2016	TiO2	mTiO2	MAPbl3-xClx	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	11.6
Seo, MS. et al, Nanoscale 8, 11472–											
11479 (2016)	2016	TiO2	TiO2	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.5
Seo, MS. et al, Nanoscale 8, 11472–	2010	TiO2	TiO2					DME			10.0
11479 (2016)	2016	1102	HU2	MAPDI3	two-step	spin	no		spiro-Oivie i AD	LI+IRH	12.6

Sfyri, G. et al., Appl. Surf. Sci. 360, 767– 771 (2016)	2016	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	CuMePc	no	5
Shaikh, S. F. et al., J. Mater. Chem. A 4, 15478–15485 (2016)	2016	TiO2	mTiO2	MAPbl3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	15.8
Shaikh, S. F. et al., J. Mater. Chem. A 4, 15478–15485 (2016)	2016	TiO2	mTiO2	MAPbI3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	11.1
Shin, S. S. et al., J. Phys. Chem. Lett. 7, 1845–1851 (2016)	2016	Zn2SnO4	0	MAPbl3	two-step	spin	toluene	DMF	ΡΤΑΑ	no	17.6
Song, J. et al., J. Mater. Chem. A 4, 8435– 8443 (2016)	2016	ZnO	0	FAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	14.1
Song, J. et al., J. Mater. Chem. A 4, 8435–8443 (2016)	2016	ZnO	0	FAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	16.1
Song, J. et al., J. Mater. Chem. A 4, 8435– 8443 (2016)	2016	ZnO	0	FAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	11
Song, S. et al., Nano Energy 28, 269–276 (2016)	2016	PEIE	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	11.5
Song, S. et al., Nano Energy 28, 269–276 (2016)	2016	0	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	7.4
Song, S. et al., Nano Energy 28, 269–276 (2016)	2016	TiO2	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	11
Song, S. et al., Nano Energy 28, 269–276 (2016)	2016	PEIE	mAl2O3	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	14.1

Song, S. et al., Nano Energy 28, 269–276 (2016)	2016	no	no	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	4.7
Song, J. et al., Sol. Energy Mater. Sol. Cells 144, 623–630 (2016)	2016	SnO2	0	МАРЫЗ	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	12.4
Song, J. et al., Sol. Energy Mater. Sol. Cells 144, 623–630 (2016)	2016	ZnO	0	ΜΑΡЫЗ	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.9
Song, J. et al., Sol. Energy Mater. Sol. Cells 144, 623–630 (2016)	2016	SnO2	0	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	14.3
Song, D. H. et al., J. Power Sources 310, 130–136 (2016)	2016	TiO2	0	MAPbI3-xClx	one-step	spin 2-3	no	DMSO	ΡΤΑΑ	Li+TBP	11.6
Song, D. H. et al., J. Power Sources 310, 130–136 (2016)	2016	TiO2	0	MAPbI3-xClx	one-step	spin 2-3	no	DMSO	ΡΤΑΑ	Li+TBP	15.6
Su, P. Y. et al., Electrochim. Acta 209, 529– 540 (2016)	2016	TiO2	0	MAPbI3	one-step	spin	no	DMF	SP-no1-Co	no	13.9
Su, P. Y. et al., Electrochim. Acta 209, 529– 540 (2016)	2016	TiO2	0	MAPbl3	one-step	spin	no	DMF	SP-no1	no	12.4
Su, P. Y. et al., Electrochim. Acta 209, 529– 540 (2016)	2016	TiO2	0	MAPbl3	one-step	spin	no	DMF	H1no1	no	11.6
Su, P. Y. et al., Electrochim. Acta 209, 529–540 (2016)	2016	TiO2	0	MAPbl3	one-step	spin	no	DMF	SP-no2	no	6.5

Su, P. Y. et al., Electrochim. Acta 209, 529– 540 (2016)	2016	TiO2	0	MAPbI3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	14.7
Su, P. Y. et al., Electrochim. Acta 209, 529–540 (2016)	2016	TiO2	0	MAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	13
Supasai, T. et al., Sol. Energy 136, 515–524 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	РЗНТ	no	6.5
Tai, Q. et al., Nat. Commun. 7, 11105 (2016)	2016	TiO2	mTiO2	MAPb13	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.3
Tai, Q. et al., Nat. Commun. 7, 11105 (2016)	2016	TiO2	mTiO2	MAPb(SCN) xl3-x	two-step	spin	no	DMSO	spiro-OMeTAD	Li+TBP	15.1
Tai, Q. et al., Nat. Commun. 7, 11105 (2016)	2016	TiO2	mTiO2	MAPb13	two-step	spin	no	DMSO	spiro-OMeTAD	Li+TBP	8.8
Tai, Q. et al., Nat.Commun. 7, 11105 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMSO	spiro-OMeTAD	Li+TBP	12.4
Tang, J. F. et al., Sol. Energy Mater. Sol. Cells 154, 18–22 (2016)	2016	ZnO	0	MAPbI3	one-step	spin	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	11.3
Tang, J. F. et al., Sol. Energy Mater. Sol. Cells 154, 18–22 (2016)	2016	0	cZnO- nanowire	MAPbI3	one-step	spin	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	13.6
Tavakoli, M. M. et al., J. Phys. Chem. C 120, 19531–19536 (2016)	2016	TiO2	0	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.5
Tavakoli, M. M. et al., J. Phys. Chem. C 120, 19531–19536 (2016)	2016	TiO2	Rgs	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	17.2

Tavakoli, M. M. et al., J. Phys. Chem. C 120, 19531–19536 (2016)	2016	TiO2	2D- graphene	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	15.3
Tseng, ZL. et al., Nano Energy 28, 311–318 (2016)	2016	ZnO	0	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.1
Tseng, ZL. et al., Nano Energy 28, 311–318 (2016)	2016	AZO	0	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	17.6
Wang, J. et al., Electrochim. Acta 210, 673– 680 (2016)	2016	TiO2	mTiO2	MAPb13	one-step	spin	no	DMF	HBZ-7no	no	4.5
Wang, J. et al., Electrochim. Acta 210, 673– 680 (2016)	2016	TiO2	mTiO2	MAPbI3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	5.1
Wang, Z. et al., Org. Electron. physics, Mater. Appl. 33, 142– 149 (2016)	2016	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	PDTSTTz-4	Li+TBP	13.9
Wang, Z. et al., Org. Electron. physics, Mater. Appl. 33, 142– 149 (2016)	2016	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	PDTSTTz	Li+TBP	13.3
Wang, Z. et al., Org. Electron. physics, Mater. Appl. 33, 142– 149 (2016)	2016	TiO2	C60	MAPbI3-xClx	one-step	spin	no	DMF	PDTSTTz-4	Li+TBP	15.8
Wang, Z. et al., Org. Electron. physics, Mater. Appl. 33, 142– 149 (2016)	2016	TiO2	C60	MAPbI3-xClx	one-step	spin	no	DMF	PDTSTTz	Li+TBP	14.4
Wang, Z. et al., Org. Electron. physics, Mater. Appl. 33, 142– 149 (2016)	2016	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	РЗНТ	Li+TBP	12.5

Wang, Z. et al., Org.Electron. physics, Mater. Appl. 33, 142– 149 (2016)	2016	TiO2	C60	MAPbl3-xClx	one-step	spin	no	DMF	РЗНТ	Li+TBP	14.3
Wang, Z. et al., Org. Electron. physics, Mater. Appl. 33, 142– 149 (2016)	2016	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	11.9
Wang, Z. et al., Org. Electron. physics, Mater. Appl. 33, 142– 149 (2016)	2016	TiO2	C60	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.6
Wang, S. et al., Nanoscale 8, 6600– 6608 (2016)	2016	TiO2	mTiO2	MAPb13	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	12
Wang, S. et al., Nanoscale 8, 6600– 6608 (2016)	2016	TiO2	mTiO2	MAPb13	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	14.6
Wang, S. et al., Nanoscale 8, 6600– 6608 (2016)	2016	TiO2	mTiO2	MAPb13	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	12.2
Wang, S. et al., Nanoscale 8, 6600– 6608 (2016)	2016	TiO2	mTiO2	MAPb13	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	10.1
Wang, S. et al., Nanoscale 8, 6600– 6608 (2016)	2016	TiO2	mTiO2	MAPb13	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	7.3
Wang, S. et al., Nanoscale 8, 6600– 6608 (2016)	2016	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	6.8
Wang, W. et al., Nanoscale Res. Lett. 11, 316 (2016)	2016	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	no	12.4

Wang, W. et al., Nanoscale Res. Lett. 11, 316 (2016)	2016	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	no	10.6
Wang, F. et al., Nanoscale 8, 11882– 11888 (2016)	2016	TiO2	no	MAPbl3	one-step	spin	toluene	DMSO	SWNT-GO	no	11.7
Wang, F. et al., Nanoscale 8, 11882– 11888 (2016)	2016	TiO2	no	MAPbl3	one-step	spin	toluene	DMSO	spiro-OMeTAD	Li+TBP	12.1
Wang, F. et al., Adv. Mater. 28, 9986– 9992 (2016)	2016	TiO2	0	FAPbI3	one-step	spin 2-3	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	19.2
Wang, F. et al., Adv. Mater. 28, 9986– 9992 (2016)	2016	TiO2	0	FAPbI3	one-step	spin 2-3	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	11.8
Wang, W. et al., J. Mater. Sci. Mater. Electron. 27, 9384– 9390 (2016)	2016	TiO2	0	MAPbl3-xClx	one-step	spin 2-3	no	DMF	spiro-OMeTAD	Li+TBP	11.9
Wang, W. et al., J. Mater. Sci. Mater. Electron. 27, 9384– 9390 (2016)	2016	TiO2	0	MAPbl3-xClx	one-step	spin 2-3	no	DMF+H3PO2	spiro-OMeTAD	Li+TBP	12.4
Wei, Q. et al., RSC Adv. 6, 56807–56811 (2016)	2016	TiO2	0	FAPbI3	one-step	spin	no	DMSO+GBL	spiro-OMeTAD	Li+TBP	14.3
Wei, Q. et al., RSC Adv. 6, 56807–56811 (2016)	2016	TiO2	0	FAPb13	one-step	spin	no	DMSO+GBL+ CN	spiro-OMeTAD	Li+TBP	16.5
Wei, J. et al., Nano Energy 26, 139–147 (2016)	2016	TiO2	no	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12.5
Wei, J. et al., Nano Energy 26, 139–147 (2016)	2016	TiO2	no	MAPbl3-xClx	one-step	spin	no	DMF+PCBM	spiro-OMeTAD	Li+TBP	14.2

Wei, J. et al., Nano Energy 26, 139–147 (2016)	2016	TiO2	no	MAPbI3-xClx	one-step	spin	no	DMF+PCBM+ PEG	spiro-OMeTAD	Li+TBP	17.1
Wei, J. et al., Nano Energy 26, 139–147 (2016)	2016	TiO2	no	MAPbI3-xClx	one-step	spin	no	DMF+PEG	spiro-OMeTAD	Li+TBP	16.3
Wei, Q. et al., Sol. Energy 135, 654–661 (2016)	2016	no	no	MAPbl3	one-step	spin	chlorobenzene	DMSO+GBL	spiro-OMeTAD	Li+TBP	10.2
Wei, Q. et al., Sol. Energy 135, 654–661 (2016)	2016	no	no	MAPbI3	one-step	spin	chlorobenzene	DMSO+GBL	spiro-OMeTAD	Li+TBP	10.1
Wei, Q. et al., Sol. Energy 135, 654–661 (2016)	2016	no	no	MAPbI3	one-step	spin	chlorobenzene	DMSO+GBL	spiro-OMeTAD	Li+TBP	10
Wu, C. et al., J. Phys. Chem. C 120, 26710– 26719 (2016)	2016	TiO2	0	FAPbl3-xBrx	two-step	spin	no	NMP	spiro-OMeTAD	Li+TBP+FK 209	14
Wu, C. et al., J. Phys. Chem. C 120, 26710– 26719 (2016)	2016	TiO2	mTiO2	FAPbl3-xBrx	two-step	spin	no	NMP	spiro-OMeTAD	Li+TBP+FK 209	15.5
Wu, W. Q. et al., J. Power Sources 329, 17–22 (2016)	2016	no	no	MAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	2.7
Wu, W. Q. et al., J. Power Sources 329, 17–22 (2016)	2016	0	TiO2	MAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	14.7
Xiao, Y. et al., J. Power Sources 306, 171–177 (2016)	2016	TiO2	0	MAPbl3	two-step	spin 2-3- dip	no	GBL	PEDOT	no	12.4
Xiong, H. et al., J. Mater. Chem. C 4, 6848– 6854 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	no	12.4

Xiong, H. et al., J. Mater. Chem. C 4, 6848–6854 (2016)	2016	TiO2	mTiO2	MAPb13	two-step	spin	no	DMF	spiro-OMeTAD	no	11.3
Yan, JJ. et al., Superlattices Microstruct. 94, 196– 203 (2016)	2016	TiO2	0	MAPbl3	two-step	spin-dip	no	DMF	РЗНТ	Li+TBP	8.6
Yang, Y. et al., J. Alloys Compd. 684, 84–90 (2016)	2016	TiO2	mTiO2	MAPbI3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	6.8
Yang, Y. et al., J. Alloys Compd. 684, 84–90 (2016)	2016	TiO2	mTiO2	MAPbI3	one-step	spin	no	DMF+BAI	spiro-OMeTAD	Li+TBP	9.1
Yang, Y. et al., J. Alloys Compd. 684, 84–90 (2016)	2016	TiO2	mTiO2	MAPbl3	one-step	spin	no	DMF+NH4I	spiro-OMeTAD	Li+TBP	9.5
Yang, S. et al., J. Mater. Chem. A 4, 9430– 9436 (2016)	2016	TiO2	0	FAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	5.9
Yang, S. et al., J. Mater. Chem. A 4, 9430–9436 (2016)	2016	TiO2	0	FAPbl3	one-step	spin	no	DMF+NH4SC N	spiro-OMeTAD	Li+TBP	11.4
Ahmadian-Yazdi, M. R. et al., Nanoscale Res. Lett. 11, 408 (2016)	2016	TiO2	0	MAPbI3-xClx	two-step	spin-dip	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	3.5
Ahmadian-Yazdi, M. R. et al., Nanoscale Res. Lett. 11, 408 (2016)	2016	TiO2	0	MAPbI3-xClx	one-step	spin 2-3	toluene	DMSO	spiro-OMeTAD	Li+TBP	7.3
Ye, J. et al., Sol. Energy 136, 505–514 (2016)	2016	TiO2	mTiO2	MAPb13	one-step	spin 2-3	no	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	15.9
Ye, J. et al., Sol. Energy 136, 505–514 (2016)	2016	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	chlorobenzene +acetonitrile	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	18.3

Ye, J. et al., RSC Adv. 6, 36356–36361 (2016)	2016	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	P3HT	no	13.8
Ye, J. et al., RSC Adv. 6, 36356–36361 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	РЗНТ	no	8.2
Yi, Y. et al., RSC Adv. 6, 82759–82762 (2016)	2016	TiO2	mTiO2	MAPb13	one-step	spin	no	DMF	no	no	4.4
Yi, Y. et al., RSC Adv. 6, 82759–82762 (2016)	2016	TiO2	mTiO2	MAPb13	one-step	spin	no	DMF	no	no	0.1
Yin, X. et al., ACS Appl. Mater. Interfaces 8, 29580– 29587 (2016)	2016	TiZn2O4	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.1
Yoon, H. et al., Energy Environ. Sci. 9, 2262– 2266 (2016)	2016	BCP	C60	MAPbl3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.1
Yu, X. et al., J. Power Sources 325, 534–540 (2016)	2016	TiO2	mAl2O3	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	no	10.5
Yu, X. et al., J. Power Sources 325, 534–540 (2016)	2016	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	no	10.7
Yu, X. et al., J. Power Sources 325, 534–540 (2016)	2016	TiO2	mSiO2	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	no	15.8
Yu, Y. et al.,ChemSusChem 9, 3288–3297 (2016)	2016	SnO2	C60-SAM	FAPbl3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	15.2
Yu, Y. et al., ChemSusChem 9, 3288–3297 (2016)	2016	SnO2	C60- SAM	FA0.8Cs0.2 P bl3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.6

Yu, Y. et al., ChemSusChem 9,				FA0.8Cs0.2							
3288–3297 (2016)	2016	SnO2	C60- SAM	Р	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.6
				bl3							
Yu, M. et al., Chem. Phys. Lett. 662, 257–			_								
262 (2016)	2016	TiO2	0	MAPbI3	one-step	spin	no	DMF	spiro-OMeTAD	LI+IBP	7.2
Yu, M. et al., Chem. Phys. Lett. 662, 257–											
262 (2016)	2016	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16.4
Yuan, Z. et al., ACS Appl. Mater.											
Interfaces 8, 34446–	2016	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.8
34454 (2016)											
Yuan, Z. et al., ACS Appl. Mater.											
Interfaces 8, 34446–	2016	TiO2	0	MAPbl3-xClx	one-step	spin 2-3	no	DMF	spiro-OMeTAD	Li+TBP	16.6
34454 (2016)											
Yuan, M. et al., Electrochim. Acta 215, 374–											
379 (2016)	2016	TiO2	m1iO2	MAPbI3	two-step	spin	no	DMF	CZIS-QD	no	10.7
Yuan, M. et al., Electrochim. Acta											
215, 374–379 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF	CZTSe-QD	no	9.7
Yuan, S. et al., RSC Adv. 6, 47459–47467											
(2016)	2016	TiO2	PCBM	MAPbl3	two-step	vasp	no	na	spiro-OMeTAD	Li+TBP	15.6
Zhang, Y. et al., Chem. Commun. 52,											
5674–5677 (2016)	2016	TiO2	mTiO2	MAPbl3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	12.5
Zhang, Y. et al., Chem. Commun. 52,											
5674–5677 (2016)	2016	TiO2	mTiO2	MAPbl3	one-step	spin	chlorobenzene	DMF+CNT	spiro-OMeTAD	Li+TBP	10.3

Zhang, Y. et al., Chem. Commun. 52, 5674–5677 (2016)	2016	TiO2	mTiO2	MAPbI3	one-step	spin	chlorobenzene	DMF+s-CNT	spiro-OMeTAD	Li+TBP	15.2
Zhang, F. et al., Synth. Met. 220, 187–193 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	14
Zhang, F. et al., Synth. Met. 220, 187–193 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.6
Zhang, F. et al., Synth. Met. 220, 187–193 (2016)	2016	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	10.6
Zhang, F. et al., Chem. Mater. 28, 802–812 (2016)	2016	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10.6
Zhang, F. et al., Chem. Mater. 28, 802–812 (2016)	2016	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10.6
Zhang, F. et al., Chem. Mater. 28, 802–812 (2016)	2016	TiO2	mTiO2	MAPbI3-xClx	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	5.8
Zhang, F. et al., Chem. Mater. 28, 802–812 (2016)	2016	TiO2	mTiO2	MAPbI3-xClx	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	5
Zhang, H. et al., J. Mater. Chem. A 4, 8724– 8733 (2016)	2016	PDI	0	MAPbI3-xClx	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.7
Zhang, H. et al., J. Mater. Chem. A 4, 8724–8733 (2016)	2016	no	no	MAPbl3-xClx	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	12.9
Zhang, X. et al., J. Alloys Compd. 681, 191–196 (2016)	2016	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	no	8.6

Zhang, X. et al., J. Alloys Compd. 681, 191–196 (2016)	2016	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	no	12.1
Zhang, C. Z. et al., Opt. Quantum Electron. 48, 550 (2016)	2016	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10.4
Zhao, B. G. et al., J. Mater. Sci. Mater. Electron. 27, 10869– 10876 (2016)	2016	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.1
Zhao, B. G. et al., J. Mater. Sci. Mater. Electron. 27, 10869– 10876 (2016)	2016	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10.3
Zhao, Q. et al., Sci. Rep. 6, 38670 (2016)	2016	TiO2	0	MAPbi3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13
Zhao, Q. et al., Sci. Rep. 6, 38670 (2016)	2016	TiO2	0	MAPbI3	one-step	spin	no	DMF+HAc	spiro-OMeTAD	Li+TBP	14.7
Zhou, Z. et al., RSC Adv. 6, 78585–78594 (2016)	2016	TiO2	0	MAPbl3	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	10.6
Zhou, Z. et al., RSC Adv. 6, 78585–78594 (2016)	2016	TiO2	C60	MAPbI3	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	16.6
Zhou, Z. et al., Chem. Commun. 52, 3828–3831 (2016)	2016	TiO2	mTiO2	MAPb13	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	14.8
Zhou, Z. et al., Chem. Commun. 52, 3828–3831 (2016)	2016	TiO2	mTiO2	FAPbl3	two-step	vasp	no	DMF	spiro-OMeTAD	Li+TBP	12.4

Zhou, P. et al., Sol. Energy 137, 579–584 (2016)	2016	TiO2	SnO2	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	9.2
Zuo, L. et al., J. Am. Chem. Soc. 138, 15710–15716 (2016)	2016	SnO2	0	MAPbI3-xClx	two-step	spin-drip	no	DMF	spiro-OMeTAD	Li+TBP	19.2
Zuo, L. et al., J. Am. Chem. Soc. 138, 15710–15716 (2016)	2016	SnO2	0	MAPbI3-xClx	two-step	spin-drip	no	DMF	spiro-OMeTAD	Li+TBP	18.2
Zuo, L. et al., J. Am. Chem. Soc. 138, 15710–15716 (2016)	2016	SnO2	0	MAPbI3-xClx	two-step	spin-drip	no	DMF	spiro-OMeTAD	Li+TBP	17.3
Aeineh, N. et al., ACS Appl. Mater. Interfaces 9, 13181– 13187 (2017)	2017	TiO2	mTiO2	MAPb13	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	16.4
Aeineh, N. et al., ACS Appl. Mater. Interfaces 9, 13181– 13187 (2017)	2017	TiO2	mTiO2	MAPb13	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	16.2
Aeineh, N. et al., ACS Appl. Mater. Interfaces 9, 13181– 13187 (2017)	2017	TiO2	mTiO2	MAPbI3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.6
An, Q. et al., Nano Energy 39, 400–408 (2017)	2017	ZnO	0	MAPbI3	one-step	spin	no	DMF+HP	spiro-OMeTAD	Li+TBP	6.5
An, Q. et al., Nano Energy 39, 400–408 (2017)	2017	ZnO-Li	0	MAPbl3	one-step	spin	no	DMF+HP	spiro-OMeTAD	Li+TBP	9.6
An, Q. et al., Nano Energy 39, 400–408 (2017)	2017	ZnO-Cs	0	MAPbl3	one-step	spin	no	DMF+HP	spiro-OMeTAD	Li+TBP	9.5

An, Q. et al., Nano Energy 39, 400–408 (2017)	2017	ZnO	PCBA	MAPbl3	one-step	spin	no	DMF+HP	spiro-OMeTAD	Li+TBP	15.5
An, Q. et al., Nano Energy 39, 400–408 (2017)	2017	ZnO-Li	PCBA	MAPbI3	one-step	spin	no	DMF+HP	spiro-OMeTAD	Li+TBP	18.5
An, Q. et al., Nano Energy 39, 400–408 (2017)	2017	ZnO-Cs	РСВА	MAPbI3	one-step	spin	no	DMF+HP	spiro-OMeTAD	Li+TBP	17.5
Apostolopoulou, A. et al., Sol. Energy Mater. Sol. Cells 166, 100–107 (2017)	2017	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	РЗНТ	Li+TBP	12.9
Apostolopoulou, A. et al., Sol. Energy Mater. Sol. Cells 166, 100–107 (2017)	2017	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	РЗНТ	Li+TBP	10
Barbé, J. et al., ACS Appl. Mater. Interfaces 9, 11828– 11836 (2017)	2017	TiO2	0	МАРЫЗ	one-step	spin 2-3	chlorobenzene	DMSO+GBL	spiro-OMeTAD	Li+TBP+FK 102	12.8
Barbé, J. et al., ACS Appl. Mater. Interfaces 9, 11828– 11836 (2017)	2017	SnO2	PCBM	МАРЫЗ	one-step	spin 2-3	chlorobenzene	DMSO+GBL	spiro-OMeTAD	Li+TBP+FK 102	14.8
Batmunkh, M. et al., ChemSusChem 10, 3750–3753 (2017)	2017	TiO2	mTiO2	Csl, FAl, Pbl2, MABr, PbBr2	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 102	15.2
Batmunkh, M. et al., ChemSusChem 10, 3750–3753 (2017)	2017	TiO2	mTiO2	Csl, FAl, Pbl2, MABr, PbBr2	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 102	17.7
Batmunkh, M. et al., ACS Appl. Mater. Interfaces 9, 19945– 19954 (2017)	2017	TiO2	mTiO2	МАРЫЗ	one-step	spin 2-3	chlorobenzene	DMSO	spiro-OMeTAD	Li+TBP+FK 102	13.5

Batmunkh, M. et al., ACS Appl. Mater. Interfaces 9, 19945– 19954 (2017)	2017	TiO2	TiO2	MAPb13	one-step	spin 2-3	chlorobenzene	DMSO	spiro-OMeTAD	Li+TBP+FK 102	16.1
Cai, F. et al., J. Mater. Chem. A 5, 9402–9411 (2017)	2017	TiO2	0	MAPbI3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.6
Cai, F. et al., J. Mater. Chem. A 5, 9402–9411 (2017)	2017	TiO2	0	MAPbI3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.8
Cai, F. et al., J. Mater. Chem. A 5, 9402–9411 (2017)	2017	TiO2	C60-ETA	MAPbI3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.6
Cai, F. et al., J. Mater. Chem. A 5, 9402–9411 (2017)	2017	TiO2	PCBM	MAPbI3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	20.3
Chaudhary, B. et al., ChemSusChem 10, 2473–2479 (2017)	2017	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	15.1
Chaudhary, B. et al., ChemSusChem 10, 2473–2479 (2017)	2017	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	11.6
Chen, M. et al., Chem. Eng. J. 313, 791–800 (2017)	2017	TiO2	mTiO2	МАРЫЗ	two-step	spin-drip	no	DMF	no	no	7.9
Chen, M. et al., Chem. Eng. J. 313, 791–800 (2017)	2017	TiO2	mTiO2	MAPbI3	two-step	spin-drip	no	DMF	no	no	7.3
Chen, Z. et al., J. Power Sources 351, 123–129 (2017)	2017	SnO2	0	MAPbI3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	7.4
Chen, Z. et al., J. Power Sources 351, 123–129 (2017)	2017	SnO2	PCBM	MAPbI3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.3

Chen, C. et al., ACS Energy Letters 2,				(FAPbI3)0.8							
497–503 (2017)	0047	Tion		5				DME: DM00			11.0
	2017	1102	m1102	(MAPbBr3)0.	one-step	spin 2-3	chioropenzene	DMF+DMSO	spiro-Ome i AD	LI+I BP	14.8
				15							
Chen, C. et al., ACS Energy Letters 2,				(FAPbl3)0.8							
497–503 (2017)	2017	TiO2	mTiO2	5	one sten	spin 2-3	chlorobenzene		spiro-OMeTAD	Li+TBP+FK	18.7
	2017	noz	111102	(MAPbBr3)0.	one-step	spin 2-3	chiorobenzene	DIVIFTDIVISO	spiro-Onie IAD	209	10.7
				15							
Chen, C. et al., ACS Energy Letters 2,				(FAPbl3)0.8						Li+TBP+Cu(
497–503 (2017)	2017	TiO2	mTiΩ2	5	one-sten	snin 2-3	chlorobenzene	DME+DMSO	spiro-OMeTAD	h h	18.5
	2017	1102	111102	(MAPbBr3)0.	one-step	30112-0	Ghioroberizene		Spiro-Onici AD	ncm)	10.0
				15						poiny	
Chen, BA. et al., ACS Energy Lett. 2, 342–	0017	Tion						51/5			
348 (2017)	2017	TiO2	0	MAPbl3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+IBP	14.4
Chen, J. Y. et al., Sol. Energy Mater. Sol.											
Cells 164, 47–55	2017	SnO2	0	MAPbl3	one-step	spin 2-3	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	13.9
(2017)											
Chen, J. Y. et al., Sol. Energy Mater. Sol.											
Cells 164, 47–55	2017	TiO2	0	MAPbI3	one-step	spin 2-3	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	14.1
(2017)											
Chen, J. Y. et al., Sol. Energy Mater. Sol.											
Cells 164, 47–55	2017	TiO2	C60	MAPbI3	one-step	spin 2-3	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	15.3
(2017)											
Cheng, N. et al., Electrochim. Acta 246, 990-											
996 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	ethanol	DMF	no	no	12.8

Cheng, N. et al., Electrochim. Acta 246, 990–996 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	ethanol	DMF	CuPc	no	16.6
Cheng, N. et al., Electrochim. Acta 246, 990– 996 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	ethanol	DMF	CuPc	no	12.1
Cheng, N. et al., Electrochim. Acta 246, 990–996 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	CuPc	no	11.7
Cheng, H. et al., Journal of Energy Chemistry (2017), doi:10.1016/j.jechem. 2017.08.007	2017	TiO2	0	MAPbI3-xClx	two-step	spin	no	DMF	TPADPP-2	Li+TBP	9.9
Cheng, H. et al., Journal of Energy Chemistry (2017), doi:10.1016/j.jechem. 2017.08.007	2017	TiO2	0	MAPbI3-xClx	two-step	spin	no	DMF	PTZDPP-2	Li+TBP	8.2
Cheng, H. et al., Journal of Energy Chemistry (2017), doi:10.1016/j.jechem. 2017.08.007	2017	TiO2	0	MAPbI3-xClx	two-step	spin	no	DMF	TPADPP-1	Li+TBP	5.1
Cheng, H. et al., Journal of Energy Chemistry (2017), doi:10.1016/j.jechem. 2017.08.007	2017	TiO2	0	MAPbI3-xClx	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	14.9
Chiang, YH. et al., ACS Appl. Mater. Interfaces 9, 2403– 2409 (2017)	2017	TiO2	mTiO2	FA1- xCsxPb(SC N)yl3-y	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	11.4
Chiang, YH. et al., ACS Appl. Mater. Interfaces 9, 2403– 2409 (2017)	2017	TiO2	mTiO2	FA1- xCsxPb(SC N)yl3-y	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	16.9

Chiang, YH. et al., ACS Appl. Mater. Interfaces 9, 2403– 2409 (2017)	2017	TiO2	mTiO2	FA1- xCsxPbl3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	14
Cho, AN. et al., J. Mater. Chem. A 5, 7603–7611 (2017)	2017	TiO2	PCBM	MAPb13	one-step	spin	diethyl ether	DMF+DMSO	ACR-TPA	Li+TBP	16.4
Cho, AN. et al., J. Mater. Chem. A 5, 7603–7611 (2017)	2017	TiO2	PCBM	MAPb13	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	16.3
Cimaroli, A. J. et al., J. Mater. Chem. C 5, 10152–10157 (2017)	2017	C60- SAM	0	MA0.7FA0.3 Pbl3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	11.8
Cohen, BE. et al., Adv. Funct. Mater. 27, 1604733 (2017)	2017	TiO2	0	MAPbBr3	one-step	spin 2-3	toluene	DMSO+GBL	no	no	6.2
Cohen, BE. et al., Adv. Funct. Mater. 27, 1604733 (2017)	2017	TiO2	0	(PEA)2(MA) n - 1PbnBr3n+1	one-step	spin 2-3	toluene	DMSO+GBL	no	no	6.3
Cohen, BE. et al., Adv. Funct. Mater. 27, 1604733 (2017)	2017	TiO2	0	MAPbBr3	one-step	spin 2-3	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP+FK 209	8.1
Cohen, BE. et al., Adv. Funct. Mater. 27, 1604733 (2017)	2017	TiO2	0	(PEA)2(MA) n - 1PbnBr3n+1	one-step	spin 2-3	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP+FK 209	8.5
Conings, B. et al., ACS Appl. Mater. Interfaces 9, 8092– 8099 (2017)	2017	TiO2	mTiO2	MAPbI3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	17.5

Conings, B. et al., ACS Appl. Mater. Interfaces 9, 8092-	2017	TiO2	mTiO2	MAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	9.1
8099 (2017)											
Kosta, I. et al., Electrochim. Acta 246, 1193–						electrod					
1199	2017	TiO2	0	MAPbl3	two-step	e	no	na	spiro-OMeTAD	Li+TBP	7.3
(2017)						position-					
						aip					
Dao, Q. D. et al., Org. Electron. physics,	2017	TiO2	mTiO2	MAPbl3	one-step	spin	toluene	DMSO	C5PcH2	no	12.2
Mater. Appl. 43, 156–161 (2017)					·	•					
Dar, M. I. et al., Adv. Funct. Mater. 27,										Li+TBP+FK	
1701433 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	209	15.3
Dar, M. I. et al., Adv. Funct. Mater. 27,										Li+TBP+FK	
1701433 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	209	14.5
Dar, M. I. et al., Adv. Funct. Mater. 27,										Li+TBP+FK	
1701433 (2017)	2017	TiO2	mTiO2	FAPbBr3	two-step	spin-dip	no	DMF	spiro-OMeTAD	209	5.4
Dar, M. I. et al., Adv. Funct. Mater. 27,										Li+TBP+FK	
1701433 (2017)	2017	TiO2	mTiO2	FAPbBr3	two-step	spin-dip	no	DMF+DMSO	spiro-OMeTAD	209	6.8
Dar, M. I. et al., Adv. Funct. Mater. 27,										Li+TBP+FK	
1701433 (2017)	2017	TiO2	mTiO2	MAPbBr3	one-step	spin	no	DMF+HBr	spiro-OMeTAD	209	1.4
Deng, X. et al., J. Phys. Chem. Lett. 8, 3206–											
3210 (2017)	2017	TiO2	0	MAPbl3	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	16.3
Ding, B. et al., J. Mater. Chem. A 5, 6840–				FA0.1MA0.9							
6848 (2017)	2017	TiO2	0	Pbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	20.4

Dong, Q. et al., Nano Energy 38, 358–367 (2017)	2017	SnO2	0	MAPbI3	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.2
Dong, Q. et al., Nano Energy 38, 358–367 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.3
Dong, Q. et al., Nano Energy 38, 358–367 (2017)	2017	no	no	MAPbl3	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.3
Eze, V. O. et al., Org. Electron. physics, Mater. Appl. 46, 253– 262 (2017)	2017	WOx	0	MAPb13	one-step	spin	no	GBL+NMP	spiro-OMeTAD	Li+TBP	13.1
Eze, V. O. et al., Org. Electron. physics, Mater. Appl. 46, 253– 262 (2017)	2017	WOx	C60	MAPbI3	one-step	spin	no	GBL+NMP	spiro-OMeTAD	Li+TBP	16.1
Fan, R. et al., J. Mater. Chem. A 5, 12034–12042 (2017)	2017	TiO2	0	MAPbI3-xClx	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.5
Fan, R. et al., J. Mater. Chem. A 5, 12034– 12042 (2017)	2017	TiO2	TiO2	MAPbl3-xClx	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16.8
Fan, R. et al., J. Mater. Chem. A 5, 12034– 12042 (2017)	2017	TiO2	0	FAI,MAI,MA CI,MABr,PbI 2	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	18.2
Fan, R. et al., J. Mater. Chem. A 5, 12034–12042 (2017)	2017	TiO2	TiO2	FAI,MAI,MA CI,MABr,PbI 2	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	20.1
Fei, C. et al., Adv. Energy Mater. 7, 1602017 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	14.8

Fei, C. et al., Adv. Energy Mater. 7, 1602017 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	ethylacetate	DMF+thioure a	spiro-OMeTAD	Li+TBP	18.5
Fei, C. et al., Adv. Energy Mater. 7, 1602017 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	no	DMF+thioure a	spiro-OMeTAD	Li+TBP	13.4
Gaml, E. A. et al., Sol. Energy Mater. Sol. Cells 168, 8–13 (2017)	2017	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	11.6
Gaml, E. A. et al., Sol. Energy Mater. Sol. Cells 168, 8–13 (2017)	2017	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	PBDTT-FTTE	DIO	11.6
Gao, X. et al., Phys. Chem. Chem. Phys. 19, 4956–4961 (2017)	2017	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10.9
Gao, X. et al., Phys. Chem. Chem. Phys. 19, 4956–4961 (2017)	2017	TiO2	TiO2	MAPb13	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.8
Gao, LL. et al., J.	2017	TiO2	0	MAPb13	one-step	spin- MAK	no	DMF	spiro-OMeTAD	Li+TBP	17.7
Gao, C. et al., Chem. Eng. J. 325, 378–385 (2017)	2017	ZnO	SnO2	MAPb13	one-step	spin	chlorobenzene	DMF	РЗНТ	no	12.3
Grancini, G. et al., Nat. Commun. 8, 15684 (2017)	2017	TiO2	mTiO2	MAPb13	one-step	spin 2-3	chlorobenzene	DMSO	spiro-OMeTAD	no	16
Grancini, G. et al., Nat. Commun. 8, 15684 (2017)	2017	TiO2	mTiO2	3% AVAI- MAPbI3	one-step	spin 2-3	chlorobenzene	DMSO	spiro-OMeTAD	no	14.6

Grisorio, R. et al. ACS Energy Lett. 2, 1029– 1034 (2017)	2017	TiO2	mTiO2	Csl, MAI, MABr, Pbl2, PbBr2	one-step	spin 2-3	chlorobenzene	DMF+DMSO	PTZ2	Li+TBP+FK 209	17.6
Grisorio, R. et al. ACS Energy Lett. 2, 1029– 1034 (2017)	2017	TiO2	mTiO2	Csl, MAI, MABr, Pbl2, PbBr2	one-step	spin 2-3	chlorobenzene	DMF+DMSO	PTZ1	Li+TBP+FK 209	2.1
Grisorio, R. et al. ACS Energy Lett. 2, 1029–1034 (2017)	2017	TiO2	mTiO2	Csl, MAI, MABr, Pbl2, PbBr2	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	17.7
Guo, Y. et al., Nano Energy 38, 193–200 (2017)	2017	Ni-Fe2O3	0	MAPbi3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	14.1
Guo, Y. et al., Nano Energy 38, 193–200 (2017)	2017	Fe2O3	0	MAPbI3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	12.3
Guo, J. J. et al., Sol. Energy 155, 121–129 (2017)	2017	TiO2	mTiO2	(FAPbl3)0.8 5 (MAPbBr3)0. 15	one-step	spin 2-3	chlorobenzene +toluene	DMF+DMSO	no	no	7.8
Guo, J. J. et al., Sol. Energy 155, 121–129 (2017)	2017	TiO2	mTiO2	(FAPbl3)0.8 5 (MAPbBr3)0. 15	one-step	spin 2-3	chlorobenzene +toluene	DMF+DMSO	ZnPcNO2-Oph	no	14.5
Guo, J. J. et al., Sol. Energy 155, 121–129 (2017)	2017	TiO2	mTiO2	(FAPbl3)0.8 5 (MAPbBr3)0. 15	one-step	spin 2-3	chlorobenzene +toluene	DMF+DMSO	CuPcNO2-Oph	no	12.8

Guo, J. J. et al., Sol. Energy 155, 121–129 (2017)	2017	TiO2	mTiO2	(FAPbl3)0.8 5 (MAPbBr3)0.	one-step	spin 2-3	chlorobenzene +toluene	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.9
				15							
Ha, SJ. et al., J. Mater. Chem. A 5, 1972–1977 (2017)	2017	PS	mTiO2	MAPbI3	one-step	spin	toluene	DMSO	PTAA	Li+TBP	17.1
Habisreutinger, S. N. et al., Adv. Energy											
Mater. 7, 1601079	2017	0	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF+H3P	SWNT-PMMA	no	6.5
(2017)											
Habisreutinger, S. N. et al., Adv. Energy											
Mater. 7, 1601079	2017	TiO2	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF+H3P	SWNT-PMMA	no	16.2
(2017)											
Habisreutinger, S. N. et al., Adv. Energy									OWNE		
Mater. 7, 1601079	2017	TiO2	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF+H3P	SVVN1-	no	12.6
(2017)									polycarbonale		
Habisreutinger, S. N. et al., Adv. Energy											
Mater. 7, 1601079	2017	TiO2	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF+H3P	SWNT-PMMA	ТВР	17.3
(2017)											
Habisreutinger, S. N. et al., Adv. Energy									CM/NIT		
Mater. 7, 1601079	2017	TiO2	mAl2O3	MAPbl3-xClx	one-step	spin	no	DMF+H3P	SWN1-	ТВР	14
(2017)									polycarbonate		
Han, F. et al., J. Power Sources 359,											
577–584 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	14.1
Han, F. et al., J. Power Sources 359,			_								
577–584 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	chlorobenzene	DMF+4MSA	spiro-OMeTAD	Li+TBP	17.6

Han, F. et al., Electrochim. Acta 236, 122–130 (2017)	2017	TiO2	mTiO2	MAPbI3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP+FK 209	17.1
Han, F. et al., Electrochim. Acta 236, 122–130 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP+FK 209	14.4
Han, F. et al., Appl. Surf. Sci. 408, 34–37 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	chlorobenzene	na	spiro-OMeTAD	Li+TBP	13.8
Han, F. et al., Appl. Surf. Sci. 408, 34–37 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	chlorobenzene +DMSO	na	spiro-OMeTAD	Li+TBP	16.8
Hatamvand, M. et al., Optik (Stuttg). 140, 443–450 (2017)	2017	ZnO	0	MAPbl3	two-step	spin-dip	no	DMF	no	no	0.3
He, M. et al., Nat. Commun. 8, 16045 (2017)	2017	TiO2	no	FA0.85MA0. 15Pbl2.55Br 0.45	one-step	MASP	no	DMSO	ΡΤΑΑ	Li+TBP	20.4
He, M. et al., Nat. Commun. 8, 16045 (2017)	2017	TiO2	no	FA0.85MA0. 15Pbl2.55Br 0.45	one-step	spin 2-3	no	DMSO	ΡΤΑΑ	Li+TBP	18.3
Hou, Y. et al., Adv. Funct. Mater. 27, 1700878 (2017)	2017	TiO2	0	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	12
Hou, Y. et al., Adv. Funct. Mater. 27, 1700878 (2017)	2017	TiO2-SnO2	0	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	16.5
Hou, Y. et al., Adv. Funct. Mater. 27, 1700878 (2017)	2017	TiO2-SnO2	0	Cs5(MA0.17 FA0.83)95P b (I0.83Br0.17) 3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	18.1

Hou, X. et al., Electrochim. Acta 236, 351–358 (2017)	2017	TiO2	0	MAPbI3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	6.1
Hou, X. et al., Electrochim. Acta 236, 351–358 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	11.3
Hou, X. et al., Electrochim. Acta 236, 351–358 (2017)	2017	TiO2	0	MAPbl3	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	7
Hou, X. et al., Electrochim. Acta 236, 351–358 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	12
Hu, W. et al., J. Mater. Chem. A 5, 1434–1441 (2017)	2017	TiO2	0	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	15.7
Hu, W. et al., J. Mater. Chem. A 5, 1434–1441 (2017)	2017	In2S3	0	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	18.2
Hu, W. et al., J. Mater. Chem. A 5, 1434–1441 (2017)	2017	TiO2	0	MAPbl3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	15.3
Hu, W. et al., J. Mater. Chem. A 5, 1434–1441 (2017)	2017	α-Fe2O3	0	MAPbl3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	14.2
Huang, ZL. et al., Superlattices Microstruct. 102, 94– 102 (2017)	2017	ZnO	Al-ZnO- nanorod	MAPbl3	two-step	spin	no	DMF	РЗНТ	Li	10.5
Huang, ZL. et al., Superlattices Microstruct. 102, 94– 102 (2017)	2017	ZnO	ZnO- nanorod	MAPbl3	two-step	spin	no	DMF	РЗНТ	Li	8
Huang, Y. T. et al., Electrochim. Acta 236, 131–139 (2017)	2017	0	mTiO2	MAPbl3	two-step	spin-dip	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	7.4

Huang, Y. T. et al., Electrochim. Acta 236, 131–139 (2017)	2017	TiO2	mTiO2	MAPbi3	two-step	spin-dip	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	13
Huang, Y. T. et al., Electrochim. Acta 236, 131–139 (2017)	2017	Nb2O5	mTiO2	MAPbl3	two-step	spin-dip	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	14.6
Huckaba, A. J. et al., Small Methods 1, 1700250 (2017)	2017	TiO2	mTiO2	(FAPbl3)0.8 5 (MAPbBr3)0. 15	one-step	spin 2-3	chlorobenzene	DMF+DMSO	no	no	8.4
Huckaba, A. J. et al., Small Methods 1, 1700250 (2017)	2017	TiO2	mTiO2	(FAPbl3)0.8 5 (MAPbBr3)0. 15	one-step	spin 2-3	chlorobenzene	DMF+DMSO	TiS2	no	13.2
Huckaba, A. J. et al., Small Methods 1, 1700250 (2017)	2017	TiO2	mTiO2	(FAPbl3)0.8 5 (MAPbBr3)0. 15	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	18.1
Islavath, N. et al., J. Energy Chem. 26, 584–591 (2017)	2017	TiO2	mTiO2	MAPb13	two-step	spin	no	DMF	no	no	1.6
Islavath, N. et al., J. Energy Chem. 26, 584–591 (2017)	2017	TiO2	mTiO2	MAPb13	two-step	spin	no	DMF	CuSCN	no	7.2
Islavath, N. et al., J. Energy Chem. 26, 584–591 (2017)	2017	TiO2	mTiO2	MAPb13	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	5
Jiang, X. et al., Sci. Rep. 7, 42564 (2017)	2017	TiO2	mTiO2	(FAPbl3)0.8 5(MAPbBr3) 0.15	one-step	spin 2-3	chlorobenzene	DMF+DMSO	no	no	8.5

Jiang, X. et al., Sci. Rep. 7, 42564 (2017)	2017	TiO2	mTiO2	(FAPbI3)0.8 5(MAPbBr3) 0.15	one-step	spin 2-3	chlorobenzene	DMF+DMSO	PEDOT	no	17
Jiang, X. et al., Sci. Rep. 7, 42564 (2017)	2017	TiO2	mTiO2	(FAPbl3)0.8 5(MAPbBr3) 0.15	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.6
Jiang, X. et al., Sci. Rep. 7, 42564 (2017)	2017	TiO2	mTiO2	(FAPbI3)0.8 5(MAPbBr3) 0.15	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	15.2
Jiang, J. et al., J. Mater. Chem. A 5, 9514– 9522 (2017)	2017	TiO2	0	MAPbl3	one-step	spin	no	DMSO+GBL	spiro-OMeTAD	Li+TBP	17.1
Jiang, J. et al., J. Mater. Chem. A 5, 9514– 9522 (2017)	2017	ITIC	0	MAPbI3	one-step	spin	no	DMSO+GBL	spiro-OMeTAD	Li+TBP	11.5
Jiang, J. et al., J. Mater. Chem. A 5, 9514–9522 (2017)	2017	TiO2	ITIC	MAPb13	one-step	spin	no	DMSO+GBL	spiro-OMeTAD	Li+TBP	20.1
Jin, J. et al., ACS Appl. Mater. Interfaces 9, acsami.7b15310 (2017)	2017	TiO2	no	MAPbI3	one-step	spin 2-3	chlorobenzene	DMSO	spiro-OMeTAD	Li+TBP	16.4
Jin, J. et al., ACS Appl. Mater. Interfaces 9, acsami.7b15310 (2017)	2017	TiO2	no	MAI(Pbl2)0. 9 7(ZnCl2)0.03	one-step	spin 2-3	chlorobenzene	DMSO	spiro-OMeTAD	Li+TBP	18.2
Jodlowski, A. D. et al., Nat. Energy 2, 972– 979 (2017)	2017	TiO2	mTiO2	MAPbI3	one-step	spin 2-3	chlorobenzene	DMSO	spiro-OMeTAD	Li+TBP+FK 209	18.9
Jodlowski, A. D. et al., Nat. Energy 2, 972–979 (2017)	2017	TiO2	mTiO2	MA1 每 x GuaxPbl3	one-step	spin 2-3	chlorobenzene	DMSO	spiro-OMeTAD	Li+TBP+FK 209	20.2

Jung, KH. et al., J. Mater. Chem. A 5, 24790–24803 (2017)	2017	SnO2	0	(FAPbl3)0.8 7 5(CsPbBr3)0 .125	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	18.3
Kavadiya, S. et al., Adv. Energy Mater. 7, 1700210 (2017)	2017	TiO2	mTiO2	MAPb13	two-step	spin- electros pr ay	no	DMF	spiro-OMeTAD	Li+TBP	12
Kavadiya, S. et al., Adv. Energy Mater. 7, 1700210 (2017)	2017	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	6.3
Ke, W. et al., Sci. Adv. 3, e1701293 (2017)	2017	TiO2	mTiO2	en-FASnI3	one-step	spin	no	DMF+DMSO	ΡΤΑΑ	no	7.1
Kırbıyık, Ç. et al., Appl. Surf. Sci. 423, 521– 527 (2017)	2017	TiO2	0	MAPb13	one-step	spin	toluene	GBL	РЗНТ	no	7.5
Kırbıyık, Ç. et al., Appl. Surf. Sci. 423, 521– 527 (2017)	2017	TiO2	SAM	MAPb13	one-step	spin	toluene	GBL	РЗНТ	no	11.3
Kim, D. H. et al., Adv. Mater. 29, 1606831 (2017)	2017	TiO2	0	FA0.6MA0.4 Pbl(3-y)Cly	one-step	spin 2-3	diethyl ether	DMF	spiro-OMeTAD	Li+TBP+FK 102	19.7
Kim, D. H. et al., Adv. Mater. 29, 1606831 (2017)	2017	TiO2	0	FA0.6MA0.4 Pbl(3-y)Cly	one-step	spin 2-3	diethyl ether	DMSO+GBL	spiro-OMeTAD	Li+TBP+FK 102	15.7
Kim, C. W. et al., Sci. Rep. 7, 6849 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	15.2
Kim, NK. et al., Sci. Rep. 7, 4645 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	15.5

Kim, W. et al., Electrochim. Acta 245, 734–741 (2017)	2017	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10.8
Kim, W. et al., Electrochim. Acta 245, 734– 741 (2017)	2017	TiO2	mTiO2	MAPbl3-xClx	two-step	dip-spin	no	DMF	spiro-OMeTAD	Li+TBP	12.1
Lee, W. et al., Org. Electron. 51, 404– 409 (2017)	2017	0	PCBM	MAPbl3	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	12.6
Lee, W. et al., Org. Electron. 51, 404– 409 (2017)	2017	PEIE- LiQ	PCBM	MAPb13	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	15.2
Lee, Y. et al., J. Mater. Chem. A 5, 12729– 12734 (2017)	2017	SnO2	0	(FAPbl3)0.8 5 (MAPbBr3)0. 15	one-step	spin 2-3	chlorobenzene	DMF+DMSO	ΡΤΑΑ	Li+TBP	13
Lee, Y. et al., J. Mater. Chem. A 5, 12729–12734 (2017)	2017	TiO2	0	(FAPbl3)0.8 5 (MAPbBr3)0. 15	one-step	spin 2-3	chlorobenzene	DMF+DMSO	ΡΤΑΑ	Li+TBP	17.7
Lee, Y. et al., J. Mater. Chem. A 5, 12729– 12734 (2017)	2017	TiO2-SnO2	0	(FAPbl3)0.8 5 (MAPbBr3)0. 15	one-step	spin 2-3	chlorobenzene	DMF+DMSO	ΡΤΑΑ	Li+TBP	19.8
Li, D. et al., Chem. Sci. 8, 4587–4594 (2017)	2017	PFN- 2TNDI	0	MAPbI3-xClx	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	17.2
Li, D. et al., Chem. Sci. 8, 4587–4594 (2017)	2017	PFN- 2TNDI	0	MAPbI3-xClx	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16
Li, D. et al., Chem. Sci. 8, 4587–4594 (2017)	2017	no	no	MAPbI3-xClx	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12
--	------	------	-------	------------------------	----------	----------------	----	-----	--------------	----------------	------
Li, H. et al., RSC Adv. 7, 30422–30427 (2017)	2017	TiO2	0	FA0.9Cs0.1 P bl3	two-step	spin- spray	no	DMF	spiro-OMeTAD	Li+TBP	8.7
Li, H. et al., RSC Adv. 7, 30422–30427 (2017)	2017	TiO2	PCBM	FA0.9Cs0.1 P bl3	two-step	spin- spray	no	DMF	spiro-OMeTAD	Li+TBP	16.8
Li, B. et al., J. Power Sources 360, 11–20 (2017)	2017	TiO2	mTiO2	CsPbBr3-Cl	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	6.2
Li, B. et al., J. Power Sources 360, 11–20 (2017)	2017	TiO2	mTiO2	CsPbBr3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	5
Li, H. et al., Sol. Energy Mater. Sol. Cells 168, 85–90 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin- spray	no	DMF	spiro-OMeTAD	Li+TBP	13.3
Li, H. et al., Sol. Energy Mater. Sol. Cells 168, 85–90 (2017)	2017	TiO2	mTiO2	MAPbI3	two-step	spin- spray	no	DMF	spiro-OMeTAD	Li+TBP	15.5
Liu, Q. et al., ChemSusChem 10, 3098–3104 (2017)	2017	TiO2	mTiO2	MAPbI3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	14.4
Liu, Q. et al., ChemSusChem 10, 3098–3104 (2017)	2017	TiO2	mTiO2	MAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+BP O	17.5
Liu, D. et al., RSC Adv. 7, 8295–8302 (2017)	2017	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.4

Liu, D. et al., RSC Adv. 7, 8295–8302 (2017)	2017	Cd2SnO4	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	18.8
Liu, C. et al., J. Phys. Chem. C 121, 6546– 6553 (2017)	2017	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	6
Liu, C. et al., J. Phys. Chem. C 121, 6546– 6553 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF+TBP	spiro-OMeTAD	Li+TBP	12.6
Liu, Y. et al., RSC Adv. 7, 1206–1214 (2017)	2017	TiO2	0	MAPbl3	one-step	spin 2-3	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	8.3
Liu, Y. et al., RSC Adv. 7, 1206–1214 (2017)	2017	TiO2	0	MAPbI3	one-step	spin 2-3	toluene	DMSO+GBL	spiro-OMeTAD	Li+TBP	9.1
Liu, Z. et al., J. Mater. Chem. A 5, 6597–6605 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	diethyl ether	DMF+DMSO	no	no	1.8
Liu, Z. et al., J. Mater. Chem. A 5, 6597–6605 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	diethyl ether	DMF+DMSO	NiOx	no	16.7
Liu, X. et al., ChemSusChem 10, 968–975 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	TPA-TPM	Li+TBP	15.1
Liu, X. et al., ChemSusChem 10, 968–975 (2017)	2017	TiO2	mTiO2	MAPb13	one-step	spin 2-3	chlorobenzene	DMF+DMSO	DPA-TPM	Li+TBP	9.3
Liu, X. et al., ChemSusChem 10, 968–975 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Ph-TPM	Li+TBP	4.6
Liu, X. et al., ChemSusChem 10, 968–975 (2017)	2017	TiO2	mTiO2	(FAPbl3)0.8 5 (MAPbBr3)0. 15	one-step	spin 2-3	chlorobenzene	DMF+DMSO	ТРА-ТРМ	Li+TBP	16.8

Liu, X. et al., ChemSusChem 10, 968–975 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	15.5
Liu, X. et al., ChemSusChem 10, 968–975 (2017)	2017	TiO2	mTiO2	(FAPbl3)0.8 5 (MAPbBr3)0. 15	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.4
Long, M. et al., Adv. Energy Mater. 7, 1601882 (2017)	2017	TiO2	0	FAPbl3-xBrx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	19.2
Long, M. et al., Adv. Energy Mater. 7, 1601882 (2017)	2017	TiO2	0	FAPbI3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.2
Lu, J. et al., Adv. Energy Mater. 7, 1700444 (2017)	2017	TiO2	0	MAPbI3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	17
Lu, J. et al., Adv.Energy Mater. 7, 1700444 (2017)	2017	TiO2	0	MA1- 2xEDAxPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	18.6
Lu, H. et al., Small 13, 1701535 (2017)	2017	TiO2	0	MAPbI3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16.9
Luo, H. et al., Energy Technol. 5, 1814– 1819 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	no	16.3
Luo, H. et al., Energy Technol. 5, 1814– 1819 (2017)	2017	TiO2	mTiO2	MAPbI3	one-step	spin	no	DMF+DMSO +Lil	spiro-OMeTAD	no	18.3
Luo, Q. et al., Adv. Funct. Mater. 27, 1702090 (2017)	2017	α-Fe2O3	0	MAPbl3	one-step	spin 2-3	toluene	DMF+DMSO	spiro-OMeTAD	Li+TBP	15
Luo, Q. et al., Adv. Funct. Mater. 27, 1702090 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	toluene	DMF+DMSO	spiro-OMeTAD	Li+TBP	13.9

Luo, Q. et al., Adv. Funct. Mater. 27, 1702090 (2017)	2017	α-Fe2O3	m-α- Fe2O3	MAPbl3	one-step	spin 2-3	toluene	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.1
Mabrouk, S. et al., Sustain. Energy Fuels 1, 2162–2171 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	11.3
Mabrouk, S. et al., Sustain. Energy Fuels 1, 2162–2171 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF+BMImI	spiro-OMeTAD	Li+TBP+FK 209	18
Mabrouk, S. et al., Sustain. Energy Fuels 1, 2162–2171 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF+Li	spiro-OMeTAD	Li+TBP+FK 209	15.6
Mabrouk, S. et al., Sustain. Energy Fuels 1, 2162–2171 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF+Li	spiro-OMeTAD	Li+TBP+FK 209	17
Mahmud, M. A. et al., Phys. Chem. Chem. Phys. 19, 21033– 21045 (2017)	2017	ZnO	0	МА0.6FA0.4 РЫЗ	one-step	spin	no	DMF	FDT	Li+TBP	12.9
Mahmud, M. A. et al., Phys. Chem. Chem. Phys. 19, 21033– 21045 (2017)	2017	ZnO	0	МА0.6FA0.4 РЫЗ	one-step	spin	no	DMF	FDT	F4TCNQ	14.7
Mahmud, M. A. et al., Sol. Energy Mater. Sol. Cells 159, 251– 264 (2017)	2017	ZnO	0	MAPbl3	two-step	spin-dip	no	DMF+TBP	РЗНТ	Li+TBP	8.8
Mali, S. S. et al., Nanoscale 9, 3095– 3104 (2017)	2017	TiO2	0	MAPbl3- xBrx	one-step	spin 2-3	toluene	DMSO+GBL	ΡΤΑΑ	Li+TBP	16.9

Mali, S. S. et al., Mater. Today Chem. 4, 53– 63 (2017).	2017	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	carbon+MAI	no	13.9
Mali, S. S. et al., Mater. Today Chem.4, 53–63 (2017).	2017	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15
Mali, S. S. et al., J. Mater. Chem. A 5, 12340–12353 (2017)	2017	TiO2	mTiO2	MAPbI3	one-step	spin	no	GBL	ΡΤΑΑ	Li+TBP	14
Mali, S. S. et al., J. Mater. Chem. A 5, 12340–12353 (2017)	2017	TiO2	TiO2	MAPbl3	one-step	spin	no	GBL	ΡΤΑΑ	Li+TBP	14.9
Mali, S. S. et al., J. Mater. Chem. A 5, 12340–12353 (2017)	2017	TiO2	TiO2	MAPbI3	one-step	spin	no	GBL	ΡΤΑΑ	Li+TBP	14.7
Mali, S. S. et al., J. Mater. Chem. A 5, 12340–12353 (2017)	2017	TiO2	TiO2	MAPbl3-xClx	one-step	spin	no	GBL	ΡΤΑΑ	Li+TBP	15.9
Mali, S. S. et al., J. Mater. Chem. A 5, 12340–12353 (2017)	2017	TiO2	TiO2	(FAPbl3)0.8 5 (MAPbBr3)0. 15	one-step	spin	no	GBL	PTAA	Li+TBP	17.6
Mali, S. S. et al., J. Mater. Chem. A 5, 12340–12353 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	11.9
Mali, S. S. et al., J. Mater. Chem. A 5, 12340–12353 (2017)	2017	TiO2	TiO2	MAPb13	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	15
Mali, S. S. et al., J. Mater. Chem. A 5, 12340–12353 (2017)	2017	TiO2	TiO2	MAPbl3	one-step	spin	no	GBL	spiro-OMeTAD	Li+TBP	12.5
Mu, C. et al., Adv. Energy Mater. 7, 1601297 (2017)	2017	TiO2	0	FAPbl2.8Cl0	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	17.4

Mu, C. et al., Adv. Energy Mater. 7, 1601297 (2017)	2017	TiO2	0	FAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	15.7
Nia, N. Y. et al., ChemSusChem 10, 3854–3860 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	РЗНТ	Li+TBP	16.9
Nia, N. Y. et al., ChemSusChem 10, 3854–3860 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	17.8
Paek, S. et al., Adv. Mater. 29, 1606555 (2017)	2017	TiO2	mTiO2	PbI2, FAI, PbBr2, MABr	one-step	spin	trifluorotoluen e	DMF+DMSO	FA-CN	no	18.9
Paek, S. et al., Adv. Mater. 29, 1606555 (2017)	2017	TiO2	mTiO2	PbI2, FAI, PbBr2, MABr	one-step	spin	trifluorotoluen e	DMF+DMSO	TPA-CN	no	17.5
Paek, S. et al., Adv. Mater. 29, 1606555 (2017)	2017	TiO2	mTiO2	PbI2, FAI, PbBr2, MABr	one-step	spin	trifluorotoluen e	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	19.2
Peng, J. et al., Adv. Energy Mater. 7, 1601768 (2017)	2017	TiO2	mTiO2	MAPbI3	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	16.3
Peng, J. et al., Adv. Energy Mater. 7, 1601768 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	16.1
Peng, J. et al., Adv. Energy Mater. 7, 1601768 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.9
Peng, J. et al., Adv. Energy Mater. 7, 1601768 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.8
Peng, J. et al., Adv. Energy Mater. 7, 1601768 (2017)	2017	TiO2	mTiO2	Cs0.05(MA0. 17FA0.83)0. 98Pb(183Br0	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.8

				17)							
Peng, J. et al., Adv. Energy Mater. 7,				Cs0.05(MA0.							
1601768 (2017)				17FA0.83)0.							
	2017	TiO2	mTiO2	98Pb(183Br0	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.3
				17)							
Peng, J. et al., Adv. Energy Mater. 7,				Cs0.05(MA0.							
1601768 (2017)				17FA0.83)0.							
	2017	TiO2	mTiO2	98Pb(183Br0	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	20.1
				17)							
Peng, J. et al., Adv. Energy Mater. 7,				Cs0.05(MA0.							
1601768 (2017)				17FA0.83)0.							
	2017	TiO2	mTiO2	98Pb(183Br0	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.6
				17)							
Pham, N. D. et al., J. Mater. Chem. A 5,	0047	Tion	Tion	MARLIN			Redead address				47.4
5195–5203 (2017)	2017	1102	m1102	MAPDI3	one-step	spin	dietnyl etner	DMF+DMSO	spiro-Ome I AD	LI+TBP	17.1
Pham, N. D. et al., J. Mater. Chem. A 5,											
5195–5203 (2017)	2017	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.9
Prathanani S et al Anni Mater Today 7											
112_119 (2017)	2017	TiO2	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	8.1
Pratyusha, T. et al., Mater. Today Proc. 4,	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	PCDTBT-	no	5.1
6820–6826 (2017)						- F			PCPDTBT		

Pratyusha, T. et al., Mater. Today Proc. 4, 6820–6826 (2017)	2017	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	PCDTBT	no	4.4
Qiu, W. et al., Adv. Funct. Mater. 27, 1700920 (2017)	2017	TiO2	PCBM	FAPbl2.85Br 0.15	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.6
Qiu, W. et al., Adv. Funct. Mater. 27, 1700920 (2017)	2017	TiO2	PCBM	FAPbl3	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.5
Qiu, W. et al., Adv. Funct. Mater. 27, 1700920 (2017)	2017	TiO2	PCBM	Cs0.1FA0.9 MA0.34Pbl2. 865Br0.135	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.3
Qiu, W. et al., Adv. Funct. Mater. 27, 1700920 (2017)	2017	TiO2	PCBM	Cs0.2FA0.8 P bl3	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.5
Qiu, L. et al., J. Phys. Chem. B 122, acs.jpcb.7b03921 (2017)	2017	TiO2	0	MAPbI3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.5
Qiu, L. et al., J. Phys. Chem. B 122, acs.jpcb.7b03921 (2017)	2017	no	no	MAPbl3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	13.5
Qiu, Z. et al., J. Am.Ceram. Soc. 100, 176–184 (2017)	2017	ZnO	PCBM	MAPbl3-xClx	two-step	spin	no	DMF	РЗНТ	no	7.5
Rajmohan, G. D. et al., Thin Solid Films 636, 307–313 (2017)	2017	TiO2	0	MAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	9.3
Ren, Y. K. et al., J. Alloys Compd. 705, 205–210 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	9.6
Ren, Y. K. et al., J. Alloys Compd. 705, 205–210 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	16.4

Sanehira, E. M. et al., Sci. Adv. 3, eaao4204 (2017)	2017	TiO2	0	CsPbl3 QD	two-step	spin-dip	no	na	spiro-OMeTAD	Li+TBP	8.5
Sanehira, E. M. et al., Sci. Adv. 3, eaao4204 (2017)	2017	TiO2	0	FA- CsPbl3 QD	two-step	spin-dip	no	na	spiro-OMeTAD	Li+TBP	13.4
Seo, G. et al., ACS Energy Lett. 2, 1705– 1710 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	17.7
Shai, X. et al., Nano Energy 36, 213–222 (2017)	2017	TiO2	0	MAPbI3-xClx	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16.7
Shai, X. et al., Nano Energy 36, 213–222 (2017)	2017	TiO2	0	MASr0.05Pb 0.95I3-xClx	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16.3
Shi, B. et al., Sol. Energy Mater. Sol. Cells 168, 214–220 (2017)	2017	TiO2	0	MAPbI3- xBrx	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.9
Shi, B. et al., Sol. Energy Mater. Sol. Cells 168, 214–220 (2017)	2017	TiO2	0	MAPbI3- xBrx	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	15.3
Shi, B. et al., Sol. Energy Mater. Sol. Cells 168, 214–220 (2017)	2017	TiO2	0	MAPbI3-xClx	two-step	CVD	no	na	spiro-OMeTAD	Li+TBP	13.2
Shi, B. et al., Sol. Energy Mater. Sol. Cells 168, 214–220 (2017)	2017	TiO2	0	MAPbI3-xClx	two-step	CVD	no	na	spiro-OMeTAD	Li+TBP	13.1
Sidhik, S. et al., J. Phys. Chem. C 121, 4239– 4245 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	ethoxyetha ne	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	12.3

Sin, D. H. et al., ACS Appl. Mater. Interfaces 9, 18103– 18112 (2017)	2017	ZnO	0	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	3.1
Sin, D. H. et al., ACS Appl. Mater. Interfaces 9, 18103– 18112 (2017)	2017	ZnO- PEG	no	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.5
Sin, D. H. et al., ACS Appl. Mater.Interfaces 9, 18103– 18112 (2017)	2017	ZnO- PEG	no	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.1
Sudchanham, J. et al., ChemistrySelect 2, 369–374 (2017)	2017	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+FK 102	11.7
Sun, M. et al., Appl. Surf. Sci. 416, 124– 132 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	no	no	7.1
Sun, M. et al., Appl. Surf. Sci. 416, 124– 132 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	Me-QTPA	no	9.1
Sun, M. et al., Appl. Surf. Sci. 416, 124– 132 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	Me-BPZTPA	no	8.2
Sun, M. et al., Appl. Surf. Sci. 416, 124– 132 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	no	5.5
Sun, M. et al., Appl. Surf. Sci. 416, 124– 132 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.7
Sun, C. et al., J. Alloys Compd. 722, 196–206 (2017)	2017	BaSnO 3	0	MAPbl3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	11

Sun, M. et al., J. Mater. Chem. A 5, 13448–13456 (2017)	2017	TiO2	mTiO2	MAPbI3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	15.5
Sun, M. et al., J. Mater. Chem. A 5, 13448–13456 (2017)	2017	TiO2	mTiO2	MAPb13	one-step	spin 2-3	chlorobenzene	DMF+DMSO +2- pyridylthioure a	spiro-OMeTAD	Li+TBP	18.2
Tong, G. et al., RSC Adv. 7, 19457–19463 (2017)	2017	CdS	0	MAPbl3	two-step	vasp	no	na	spiro-OMeTAD	Li+TBP	14.7
Torabi, N. et al., Org. Electron. 48, 211– 216 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	no	no	5.5
Torabi, N. et al., Org. Electron. 48, 211– 216 (2017)	2017	TiO2	mTiO2	MAPb13	two-step	spin-dip	no	DMF	CuPC	no	14.9
Torabi, N. et al., Org. Electron. 48, 211– 216 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	13.4
Tu, Y. et al., Sci. Rep. 7, 44603 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	15.6
Tu, Y. et al., Sci. Rep. 7, 44603 (2017)	2017	TiO2	mTiO2	MAPbl2.86B r 0.14	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	18
Upama, M. B. et al., Org. Electron. 50, 279–289 (2017)	2017	РСВМ	0	MAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.9
Wang, S. et al., Sol. Energy Mater. Sol. Cells 167, 173–177 (2017)	2017	TiO2	mTiO2	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	19.6

Wang, LY. et al., Nanoscale 9, 17893–17901 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	diisopropyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.1
Wang, Z. et al., Nat. Energy 2, 17135 (2017)	2017	SnO2	PCBM- N- DPBI	BA0.05(FA0. 83Cs0.17)0. 95Pb(I0.8Br 0 .2)3	one-step	spin	no	DMF+HI+HBr	spiro-OMeTAD	Li+TBP	20.5
Wang, Z. et al., Nat. Energy 2, 17135 (2017)	2017	SnO2	PCBM- N- DPBI	FA0.83Cs0.1 7Pb(I0.6Br0. 4)3	one-step	spin	no	DMF+HI+HBr	spiro-OMeTAD	Li+TBP	16.9
Wang, Z. et al., Nat. Energy 2, 17135 (2017)	2017	SnO2	PCBM- N- DPBI	BA0.09(FA0 .83Cs0.17)0. 91Pb(I0.6Br 0 .4)3	one-step	spin	no	DMF+HI+HBr	spiro-OMeTAD	Li+TBP	16.6
Wang, Z. et al., Adv. Mater. 29, 1604186 (2017)	2017	C60-N- DPBI	0	MAPbI3-xClx	one-step	spin 2-3	no	DMF	spiro-OMeTAD	Li+TBP	18.3
Wang, Z. et al., Adv. Mater. 29, 1604186 (2017)	2017	C60	0	MAPbI3-xClx	one-step	spin 2-3	no	DMF	spiro-OMeTAD	Li+TBP	17
Wang, X. et al., Electrochim. Acta 245, 839–845 (2017)	2017	TiO2	TiO2	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.4
Wang, X. et al., Electrochim. Acta 245, 839– 845 (2017)	2017	TiO2	TiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12.1
Wang, X. et al., Electrochim. Acta 245, 839–845 (2017)	2017	TiO2	TiO2	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	11.1

Wang, X. et al., Optik (Stuttg). 150, 111– 116 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10.2
Wang, X. et al., Optik (Stuttg). 150, 111– 116 (2017)	2017	TiO2	mTiO2	MAPb13	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	10.2
Wang, M., Sci. Bull. 62, 249–255 (2017)	2017	no	no	FAPb13	two-step	spin	no	na	spiro-OMeTAD	no	15.1
Wang, M., Sci. Bull. 62, 249–255 (2017)	2017	no	no	FAPbl3	two-step	spin	no	na	spiro-OMeTAD	no	10.6
Wang, WT. et al., ACS Appl. Mater. Interfaces 9, 10743– 10751 (2017)	2017	ZnO	0	MAPb13	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16.3
Wang, WT. et al., ACS Appl. Mater. Interfaces 9, 10743– 10751 (2017)	2017	ZnO	0	MAPbI3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.1
Wang, F. et al., J. Phys. Chem. C 121, 1562–1568 (2017)	2017	TiO2	mTiO2	MAPb13	one-step	spin	toluene	DMSO	spiro-OMeTAD	Li+TBP	16.4
Wang, F. et al., J. Phys. Chem. C 121, 1562– 1568 (2017)	2017	TiO2	mTiO2	MAPb13	one-step	spin	toluene	DMSO	spiro-OMeTAD	Li+TBP	14.6
Wang, L. et al., Electrochim. Acta 235, 640– 645 (2017)	2017	TiO2	0	MAPb13	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	9.2
Wang, H. et al., ACS Appl. Mater. Interfaces 9, 21756– 21762 (2017)	2017	TiO2	0	MAPbl3	one-step	spin 2-3	no	DMSO+GBL	spiro-OMeTAD	Li+TBP	16.7

Wang, L. et al., Energy Storage Mater. 7, 40–											
47	2017	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	16
(2017)											
Wang, L. et al., Energy Storage Mater. 7, 40–											
47	2017	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	13.5
(2017)											
Wang, L. et al., Energy Storage Mater. 7, 40–											
47	2017	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	12.4
(2017)											
Wang, L. et al., Energy Storage Mater. 7, 40–											
47	2017	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	12.2
(2017)											
Wang, L. et al., Energy Storage Mater. 7, 40–											
47	2017	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	11.4
(2017)											
Wei, W. et al., J. Mater. Chem. A 5, 7749–											
7752 (2017)	2017	TiO2	0	MAPbl3	two-step	spin	no	DMF	no	no	10.1
Wei, W. et al., Ind. Eng. Chem. Res. 56,											
1803–1809 (2017)	2017	TiO2	0	MAPbl3	two-step	spin	no	DMF	no	no	4.7
Wei, W. et al., Ind. Eng. Chem. Res. 56,											
1803–1809 (2017)	2017	TiO2	0	MAPbl3	two-step	spin	no	DMF	no	no	4.4
Wei, W. et al., Ind. Eng. Chem. Res. 56,								DMF+graphe			
1803–1809 (2017)	2017	TiO2	0	MAPbl3	two-step	spin	no	ne	no	no	4.7
Wei, W. et al., Ind. Eng. Chem. Res. 56,											
1803–1809 (2017)	2017	TiO2	0	MAPbl3	two-step	spin	no	DMF+MCN	no	no	10.4

Wu, S. et al., J. Power Sources 359, 303–310 (2017)	2017	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.3
Wu, S. et al., J. Power Sources 359, 303–310 (2017)	2017	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF+CuPc(t Bu)4	spiro-OMeTAD	Li+TBP	17.3
Wu, F. and Zhu, L., Sol. Energy Mater. Sol. Cells 167, 1–6 (2017)	2017	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	12.9
Wu, F. and Zhu, L., Sol. Energy Mater. Sol. Cells 167, 1–6 (2017)	2017	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	19.1
Wu, F. et al., Dye. Pigment. 143, 356– 360 (2017)	2017	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	JY5	Li+TBP	16.9
Wu, F. et al., Dye. Pigment. 143, 356– 360 (2017)	2017	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	X51	Li+TBP	13.2
Wu, F. et al., Dye. Pigment. 143, 356– 360 (2017)	2017	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16.2
Wu, T. et al., J. Power Sources 365, 1–6 (2017)	2017	TiO2	0	Cs0.05(MA0. 17FA0.83)0. 95Pb(10.83B r 0.17)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	16
Wu, T. et al., J. Power Sources 365, 1–6 (2017)	2017	TiO2	0	Cs0.05(MA0. 17FA0.83)0. 95Pb(I0.83B r	one-step	spin 2-3	chlorobenzene	DMF+DMSO +NMP	spiro-OMeTAD	Li+TBP	19.6

				0.17)3							
Xiang, W. et al., J. Mater. Chem. A 5, 5486– 5494 (2017)	2017	TiO2	no	MAPbl3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	13.3
Xiang, W. et al., J. Mater. Chem. A 5, 5486–5494 (2017)	2017	TiO2	no	MAPbl3	one-step	spin	chlorobenzene	DMF+PDM Surea	spiro-OMeTAD	Li+TBP	16.4
Xiao, G. et al., Ceram. Int. 43, 12534–12539 (2017)	2017	TiO2	TiO2	MAPbl3- xBrx	two-step	spin	no	DMSO	spiro-OMeTAD	Li+TBP	16.2
Xiao, M. et al., J. Am. Chem. Soc. 139, 3378–3386 (2017)	2017	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	РЗОТ	no	6.9
Xiao, M. et al., J. Am. Chem. Soc. 139, 3378–3386 (2017)	2017	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	P3DT	no	6.6
Xiao, M. et al., J. Am. Chem. Soc. 139, 3378–3386 (2017)	2017	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	P3DDT	no	3.9
Xiao, M. et al., J. Am. Chem. Soc. 139, 3378–3386 (2017)	2017	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	РЗНТ	no	9.6
Xiao, Y. et al., J. Power Sources 342, 489–494 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	no	no	10.3
Xiao, Y. et al., J. Power Sources 342, 489–494 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	no	no	12.1
Xie, X. et al., Org. Electron. 44, 120– 125 (2017)	2017	PCBM	0	MAPbl3	two-step	evap- spin	no	na	spiro-OMeTAD	Li+TBP	7.9

Xie, X. et al., Org. Electron. 44, 120– 125 (2017)	2017	PFN ITOkısmına alsak mı	PCBM	МАРЫЗ	two-step	evap- spin	no	na	spiro-OMeTAD	Li+TBP	12.9
Xu, Z. et al., J. Phys. Chem. C 121, 24389–24396 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	no	DMSO+GBL	spiro-OMeTAD	Li+TBP	8.5
Yang, G. et al., J. Mater. Chem. A 5, 1658– 1666 (2017)	2017	ZnO	0	MAPbI3	one-step	spin	chlorobenzene	DMF+DMSO	РЗНТ	no	11.4
Yang, G. et al., J. Mater. Chem. A 5, 1658–1666 (2017)	2017	SnO2	0	MAPbi3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.3
Yang, G. et al., Small 13, 1601769 (2017)	2017	SnO2	0	MAPbI3	one-step	spin 2-3	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.3
Yang, G. et al., Small 13, 1601769 (2017)	2017	SnO2	0	MAPbi3	one-step	spin 2-3	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	13.4
Ye, J. et al., Appl. Surf. Sci. 407, 427– 433 (2017)	2017	TiO2	mTiO2	(FAPbl3)0.8 5 (MAPbBr3)0. 15	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.5
Ye, T. et al., ACS Appl. Mater. Interfaces 9, 2358– 2368 (2017)	2017	TiO2	mTiO2	FA0.81MA0. 15Pb(I0.836 Br0.15)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	20.6
Ye, T. et al., ACS Appl. Mater. Interfaces 9, 2358– 2368 (2017)	2017	TiO2	mTiO2	FA0.81MA0. 15Pb(I0.836 Br0.15)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	17.1
Yu, Y. et al., ACS Appl. Mater. Interfaces 9, 23624–	2017	TiO2	mTiO2	MAPbl3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	15.4

23634 (2017)											
Yu, Y. et al., ACS Appl. Mater. Interfaces 9, 23624– 23634 (2017)	2017	TiO2	mTiO2	МАРЫЗ	one-step	spin	n-hexane	DMF+DMSO	spiro-OMeTAD	Li+TBP	15.7
Yu, M. et al., Phys. Chem. Chem. Phys. 19, 19922–19927 (2017)	2017	TiO2	mTiO2	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	15.8
Yu, M. et al., Phys. Chem. Chem. Phys. 19, 19922–19927 (2017)	2017	TiO2	0	МАРЫЗ	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP+FK 209	15.7
Zhang, T. et al., Sci. Adv. 3, e1700841 (2017)	2017	TiO2	no	CsPbl3⊡xE D Al2	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	11.7
Zhang, C. et al., Nanoscale 9, 2852– 2864 (2017)	2017	TiO2	mTiO2	MAPbI3	one-step	spin 2-3	chlorobenzene	DMSO+GBL	spiro-OMeTAD	Li+TBP+FK 209	15.1
Zhang, C. et al., Nanoscale 9, 2852– 2864 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	chlorobenzene	DMSO+GBL	spiro-OMeTAD	Li+TBP+FK 209	12
Zhang, C. et al., Nanoscale 9, 2852– 2864 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	chlorobenzene	DMSO+GBL	spiro-OMeTAD	Li+TBP+FK 209	16
Zhang, C. et al., Nanoscale 9, 2852– 2864 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	chlorobenzene	DMSO+GBL	spiro-OMeTAD	Li+TBP+FK 209	10.7
Zhang, C. et al., Energy Procedia 105, 793– 798 (2017)	2017	TiO2	0	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.5

Zhang, F. et al., Nano Energy 41,				(FAI)0.81(Pb							
469–475 (2017)				I2)0.85(MAB							
	2017	TiO2	mTiO2	r	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Z26	LI+TBP+FK	20.1
)0.15(PbBr2)						209	
				0.15							
Zhang, F. et al., Nano Energy 41,				(FAI)0.81(Pb							
469–475 (2017)				I2)0.85(MAB							
	2017	TiO2	mTiO2	r	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Z25		16.9
)0.15(PbBr2)						209	
				0.15							
Zhang, F. et al., Nano Energy 41,				(FAI)0.81(Pb							
469–475 (2017)				I2)0.85(MAB							
	2017	TiO2	mTiO2	r	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	LI+TBP+FK	20.6
)0.15(PbBr2)						209	
				0.15							
Zhang, X. et al., Sol. Energy 148, 70–77											
(2017)	2017	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	11.8
Zhang, X. et al., Sol. Energy 148, 70–77											
(2017)	2017	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF+AI	spiro-OMeTAD	Li+TBP	13.6
Zhang, W. et al., ACS Appl. Mater. Interfaces											
9, 38467–	2017	ZnO	0	MAPbl3	two-step	spin-dip	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.5
38476 (2017)											
Zhang, W. et al., ACS Appl. Mater. Interfaces											
9, 38467–	2017	ZnO	РСВМ	MAPbl3	two-step	spin-dip	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.1
38476 (2017)											

Zhang, MD. et al., Dye. Pigment. 146, 589–595 (2017)	2017	TiO2	0	MAPbI3	one-step	spin	chlorobenzene	na	SYN1	Li+TBP	13.1
Zhang, MD. et al., Dye. Pigment. 146, 589–595 (2017)	2017	TiO2	0	MAPbl3	one-step	spin	chlorobenzene	na	PARA1	Li+TBP	11.4
Zhang, MD. et al., Dye. Pigment. 146, 589–595 (2017)	2017	TiO2	0	MAPbl3	one-step	spin	chlorobenzene	na	spiro-OMeTAD	Li+TBP	12
Zhao, P. et al. J. Mater. Chem. A 5, 7905–7911 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.3
Zhao, P. et al. J. Mater. Chem. A 5, 7905– 7911 (2017)	2017	TiO2	mTiO2	MA1- xKxPbl3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.3
Zhao, Y. et al., J. Power Sources 359, 147–156 (2017)	2017	TiO2	mTiO2	FAPbI3	two-step	spin-drip	no	DMF+DMSO	spiro-OMeTAD	no	17.7
Zhao, Y. et al., J. Power Sources 359, 147–156 (2017)	2017	TiO2	mTiO2	FA0.6MA0.4 Pbl3	two-step	spin-drip	no	DMF+DMSO	spiro-OMeTAD	no	19.3
Zheng, X. et al., Nano Lett. 17, 2496– 2505 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF	no	no	15.2
Zheng, X. et al., Nano Lett. 17, 2496– 2505 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF	no	no	14.6
Zheng, X. et al., Nano Lett. 17, 2496– 2505 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF	no	no	10.7
Zheng, YZ. et al., J. Phys. Chem. Solids 107, 55–61 (2017)	2017	ZnO	0	MAPbl3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	10.1

Zheng, YZ. et al., J. Phys. Chem. Solids 107, 55–61 (2017)	2017	ZnO	0	MAPbI3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	6.5
Zheng, YZ. et al., J. Phys. Chem. Solids 107, 55–61 (2017)	2017	ZnO	0	MAPbl3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	8.9
Zheng, YZ. et al., J. Phys. Chem. Solids 107, 55–61 (2017)	2017	ZnO	0	MAPb13	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	12.7
Zheng, YZ. et al., J. Phys. Chem. Solids 107, 55–61 (2017)	2017	ZnO	0	MAPb13	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	11.2
Zheng, YZ. et al., J. Phys. Chem. Solids 107, 55–61 (2017)	2017	ZnO	0	MAPbl3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	10.9
Zheng, X. et al., Nano Energy 38, 1– 11 (2017)	2017	SnO2	PCBM	MAPbl3	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.6
Zheng, X. et al., Nano Energy 38, 1– 11 (2017)	2017	SnO2	PCBM	MAPbl3	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.8
Zheng, L. et al., Energy Procedia 105, 188– 193 (2017)	2017	TiO2	0	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.3
Zheng, L. et al., Energy Procedia 105, 188– 193 (2017)	2017	no	no	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.1
Zheng, J. et al., Sol. Energy Mater. Sol. Cells 168, 165–171 (2017)	2017	TiO2	mTiO2	MAPbl3	one-step	blowdry	no	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	17.4
Zheng, J. et al., Sol. Energy Mater. Sol. Cells 168, 165–171 (2017)	2017	TiO2	mTiO2	MAPbI3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	15.6

Zheng, L. et al., ACS Appl. Mater. Interfaces 9, 14129– 14135 (2017)	2017	TiO2	0	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	14.1
Zheng, L. et al., ACS Appl. Mater. Interfaces 9, 14129– 14135 (2017)	2017	PTEBS	0	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	15.4
Zheng, L. et al., ACS Appl. Mater. Interfaces 9, 14129– 14135 (2017)	2017	no	no	MAPbI3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	7.8
Zong, X. et al., Tetrahedron 73, 3398–3405 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	Q221	Li+TBP	10.4
Zong, X. et al., Tetrahedron 73, 3398–3405 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	Q222	Li+TBP	8.9
Zong, X. et al.,Tetrahedron 73, 3398–3405 (2017)	2017	TiO2	mTiO2	MAPbl3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	10.1
Zuo, L. et al., Sci. Adv. 3, e1700106 (2017)	2017	SnO2	no	MAPbl3-xClx	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	18
Zuo, L. et al., Sci. Adv. 3, e1700106 (2017)	2017	SnO2	no	MAPbl3-xClx	two-step	spin	no	DMF+PAA	spiro-OMeTAD	Li+TBP	19.6
Zuo, L. et al., Sci. Adv. 3, e1700106 (2017)	2017	SnO2	no	MAPbI3-xClx	two-step	spin	no	DMF+PEI	spiro-OMeTAD	Li+TBP	16.7
Zuo, L. et al., Sci. Adv. 3, e1700106 (2017)	2017	SnO2	no	MAPbl3-xClx	two-step	spin	no	DMF+PVP	spiro-OMeTAD	Li+TBP	20.2

Zuo, L. et al., Nano Lett. 17, 269–275 (2017)	2017	SnO2	0	MAPbI3-xClx	two-step	spin-drip	no	DMF	spiro-OMeTAD	Li+TBP	17.2
Zuo, L. et al., Nano Lett. 17, 269–275 (2017)	2017	SnO2	PA-SAM	MAPbl3-xClx	two-step	spin-drip	no	DMF	spiro-OMeTAD	Li+TBP	18.8
Adnan, M. and Lee, J. K., Sci. Rep. 8, 2168 (2018)	2018	TiO2	mTiO2	MAPb13	two-step	dipping	no	na	spiro-OMeTAD	Li+TBP	12.4
Amini, M. et al., J. Mater. Chem. A 6, 2632–2642 (2018)	2018	TiO2	mTiO2	MAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.1
Amini, M. et al., J. Mater. Chem. A 6, 2632– 2642 (2018)	2018	P123-ib	mTiO2	MAPb13	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16.7
Bashir, A. et al., Nanoscale 10, 2341– 2350 (2018)	2018	TiO2	mTiO2	MAPbi3- 5AVAI	one-step	spin	no	GBL	no	no	11.3
Bashir, A. et al., Nanoscale 10, 2341– 2350 (2018)	2018	TiO2	mTiO2	MAPbi3- 5AVAI	one-step	spin	no	GBL	no	no	9.3
Bashir, A. et al., Nanoscale 10, 2341– 2350 (2018)	2018	TiO2	mTiO2	MAPbi3- 5AVAI	one-step	spin	no	GBL	Co3O4	no	13.3
Bashir, A. et al., Nanoscale 10, 2341– 2350 (2018)	2018	TiO2	mTiO2	MAPbi3- 5AVAI	one-step	spin	no	GBL	Co3O4	no	11.7
Chen, TP. et al., Adv. Energy Mater. 8, 1701722 (2018)	2018	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.3
Chen, TP. et al., Adv. Energy Mater. 8, 1701722 (2018)	2018	2D titania	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.2

Chen, TP. et al., Adv. Energy Mater. 8, 1701722 (2018)	2018	no	no	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	7.2
Chen, R. et al., Energy Fuels 2, 1093–1100 (2018)	2018	TiO2	0	MAPb1-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.2
Chen, R. et al., Energy Fuels 2,1093–1100 (2018)	2018	TiO2	0	MAPb1- xZnxl3-yCly	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16.9
Christians, J. A. et al., Nat. Energy 3, 68–74 (2018)	2018	TiO2	mTiO2	(FA0.76MA0 21Cs0.03)0. 67Pb(I0.89B r 0.11)2.56	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.6
Christians, J. A. et al., Nat. Energy 3, 68–74 (2018)	2018	TiO2	mTiO2	(FA0.76MA0 21Cs0.03)0. 67Pb(10.89B r 0.11)2.56	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	14.4
Christians, J. A. et al., Nat. Energy 3, 68–74 (2018)	2018	SnO2	mTiO2	(FA0.76MA0 21Cs0.03)0. 67Pb(I0.89B r 0.11)2.56	one-step	spin 2-3	chlorobenzene	DMF+DMSO	EH44	EH44- ox+TBP	12.3
Christians, J. A. et al., Nat. Energy 3, 68–74 (2018)	2018	TiO2	mTiO2	(FA0.76MA0	one-step	spin 2-3	chlorobenzene	DMF+DMSO	EH44	EH44- ox+TBP	16.8

				21Cs0.03)0.							
				67Pb(10.89B							
				r							
				0.11)2.56							
Deng, X. et al., Superlattices Microstruct. 117,				MAPbl3-						Li+TBP+FK	
283–287 (2018)	2018	TiO2	TiO2	xBrx	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	209	18.1
Deng, X. et al., Superlattices Microstruct. 117,				MAPbl3-						Li+TBP+FK	
283–287 (2018)	2018	TiO2	TiO2	xBrx	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	209	16.4
Domanski, K. et al., Nat. Energy 3, 61–67				Cs5(FA83M							
(2018)	2018	TiO2	mTiO2	A17)95Pb(I8	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	200	20.2
				3Br17)3						209	
Draguta, S. et al. Energy Environ. Sci. 11,				FAI, Pbl2,							
960–969 (2018)	2018	TiO2	0	MABr,	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD		18.8
				PbBr2,Csl						209	
Draguta, S. et al. Energy Environ. Sci. 11,										Li+TBP+FK	
960–969 (2018)	2018	1102	0	MAPbI3	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	209	17.8
Gomez, A. et al., Nano Energy 45, 94–				FAI, PbI2,							
100 (2018)	2018	TiO2	mTiO2	MABr,	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD		17.3
				PbBr2, Csl						209	
Guo, Y. et al., ACS Appl. Energy Mater.											
acsaem.8b00094 (2018).	2018	IL/PCB M	Nb2O5	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	18.8
doi:10.1021/acsaem. 8b00094											
Guo, Y. et al., ACS Appl. Energy Mater.											
acsaem.8b00094 (2018).	2018	IL	Nb2O5	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16.4
doi:10.1021/acsaem. 8b00094											

Guo, Y. et al., ACS Appl. Energy Mater. acsaem.8b00094 (2018).	2018	PCBM	Nb2O5	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16.6
doi:10.1021/acsaem. 8b00094											
Guo, Y. et al., Sol. Energy Mater. Sol. Cells	2018	TiO2	0	MAPhI3	one-sten	snin	no	DME	spiro-OMeTAD	Li+TBP	12 7
(2018)	2010	1102	Ū			opin		Divi			12.7
Guo, Y. et al., Sol. Energy Mater. Sol. Cells											
178, 186–192	2018	TiO2	CdS	MAPbl3	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16
(2018)											
Hou, Q. et al., ChemElectroChem 5,			-								
725 (2018)	2018	α-Fe2O3	0	MAPbl3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	12.1
Hou, Q. et al., ChemElectroChem 5,											
725 (2018)	2018	α-Fe2O3	PCBM	MAPbl3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	Li+TBP	14.2
Jiang, H. et al., ACS Appl. Energy Mater. 1,											
900–909 (2018)	2018	TiO2	0	MAPbl3	one-step	spin	no	DMSO+GBL	spiro-OMeTAD	Li+TBP	16.9
Jiang, H. et al., ACS Appl. Energy Mater.								DMSO+GBL+			
1, 900–909 (2018)	2018	TiO2	0	MAPbl3	one-step	spin	no	HaHc	spiro-OMeTAD	Li+TBP	18.7
Kogo, A. et al., ACS Appl. Mater.											
Interfaces 10, 2224-	2018	TiO2	0	MAPbl3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	200	13.2
2229 (2018)										209	
Kogo, A. et al., ACS Appl. Mater.										l i+TRP+FK	
Interfaces 10, 2224–	2018	0	mTiO2	MAPbl3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	209	13
2229 (2018)										203	
Kogo, A. et al., ACS Appl. Mater.										l i+TBP+FK	
Interfaces 10, 2224–	2018	SnO2	mTiO2	MAPbl3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	209	18.6
2229 (2018)										200	

Kogo, A. et al., ACS Appl. Mater. Interfaces 10, 2224– 2229 (2018)	2018	TiO2	mTiO2	MAPb13	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	20.2
Li, F. et al., Adv. Funct. Mater. 28, 1706377 (2018)	2018	TiO2	0	MAPb13	one-step	spin	chlorobenzene	DMSO+GBL	spiro-OMeTAD	no	17.7
Li, F. et al., Adv. Funct. Mater. 28, 1706377 (2018)	2018	TiO2	0	MAPbI3	one-step	spin	chlorobenzene +PF1	DMSO+GBL	spiro-OMeTAD	no	18.7
Li, F. et al., Adv. Funct. Mater. 28, 1706377 (2018)	2018	TiO2	0	MAPbI3	one-step	spin	chlorobenzene +F+N2200	DMSO+GBL	spiro-OMeTAD	no	18.4
Li, F. et al., Adv. Funct. Mater. 28, 1706377 (2018)	2018	TiO2	0	МАРЫЗ	one-step	spin	chlorobenzene +PF0	DMSO+GBL	spiro-OMeTAD	no	18.1
Li, F. et al., Adv. Funct. Mater. 28, 1706377 (2018)	2018	TiO2	0	MAPbI3	one-step	spin	chlorobenzene +N2200	DMSO+GBL	spiro-OMeTAD	no	17.9
Li, K. et al., Sci. Rep. 8, 442 (2018)	2018	C60	0	MAPbI3	two-step	evap- spin	no	na	spiro-OMeTAD	Li+TBP	15
Li, B. et al., Nat. Commun. 9, 1076-2018	2018	TiO2	mTiO2	CsPbl3	one-step	spin	no	DMF+DMSO +PVP	spiro-OMeTAD	no	10.7
Li, B. et al., Nat. Commun. 9, 1076 (2018)	2018	TiO2	mTiO2	CsPbl2Br	one-step	spin	no	DMF+DMSO +PVP	spiro-OMeTAD	no	8
Liu, N. et al., J. Mater. Chem. A 6, 6806–6814 (2018)	2018	SnO2	0	MAxFA1- xPbl3-yBry	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	20.6
Liu, N. et al., J. Mater. Chem. A 6, 6806–6814 (2018)	2018	SnO2	0	MAxFA1- xPbl3-yBry	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.5

Magomedov, A. et al., Adv. Funct.				Cs0.1(MA0.1							
Mater. 28, 1704351				5FA0.85)0.9			trifluorotoluen			Li+TBP+FK	
(2018)	2018	TiO2	m1iO2	Pb(I0.85Br0.	one-step	spin	e	DMF+DMSO	V885	209	18.9
				15)							
Magomedov, A. et al., Adv. Funct.				Cs0.1(MA0.1							
Mater. 28, 1704351		Tion	T '00	5FA0.85)0.9			trifluorotoluen			Li+TBP+FK	40.0
(2018)	2018	TIO2	m1iO2	Pb(I0.85Br0.	one-step	spin	е	DMF+DMSO	V911	209	18.9
				15)							
Magomedov, A. et al., Adv. Funct.				Cs0.1(MA0.1							
Mater. 28, 1704351	0040	Tion	Tion	5FA0.85)0.9			trifluorotoluen		1/000	Li+TBP+FK	40.5
(2018)	2018	TIO2	m1iO2	Pb(I0.85Br0.	one-step	spin	e	DMF+DMSO	V886	209	18.5
				15)							
Magomedov, A. et al., Adv. Funct.				Cs0.1(MA0.1							
Mater. 28, 1704351	2010	TiOD		5FA0.85)0.9			trifluorotoluen		1/1==20	Li+TBP+FK	47.4
(2018)	2010	1102	IIIIOz	Pb(I0.85Br0.	one-step	spin	е	DIVIF+DIVISO	v 11039	209	17.4
				15)							
Magomedov, A. et al., Adv. Funct.				Cs0.1(MA0.1							
Mater. 28, 1704351	2010	TiOD		5FA0.85)0.9			trifluorotoluen		1/040	Li+TBP+FK	17.1
(2018)	2018	1102	miloz	Pb(I0.85Br0.	one-step	spin	е	DMF+DMSO	V946	209	17.1
				15)							
Magomedov, A. et al., Adv. Funct.				Cs0.1(MA0.1							
Mater. 28, 1704351	2010	TiOD		5FA0.85)0.9			trifluorotoluen		2057	Li+TBP+FK	17.1
(2018)	2018	1102	miloz	Pb(I0.85Br0.	one-step	spin	е	DMF+DMS0	V957	209	17.1
				15)							
Magomedov, A. et al., Adv. Funct.				Cs0.1(MA0.1			1.10				
Mater. 28, 1704351	2018	TiO2	mTiO2	5FA0.85)0.9	one-step	spin	triffuorotoluen	DMF+DMSO	V928	LI+1BP+FK	16.5
(2018)				Pb(I0.85Br0.			e			209	

				15)							
Magomedov, A. et al., Adv. Funct. Mater. 28, 1704351 (2018)	2018	TiO2	mTiO2	Cs0.1(MA0.1 5FA0.85)0.9 Pb(I0.85Br0. 15)	one-step	spin	trifluorotoluen e	DMF+DMSO	V9no8	Li+TBP+FK 209	16.5
Magomedov, A. et al., Adv. Funct. Mater. 28, 1704351 (2018)	2018	TiO2	mTiO2	Cs0.1(MA0.1 5FA0.85)0.9 Pb(I0.85Br0. 15)	one-step	spin	trifluorotoluen e	DMF+DMSO	V931	Li+TBP+FK 209	16.3
Mathies, F. et al., ACS Appl. Energy Mater. acsaem.8b00222 (2018). doi:10.1021/acsaem. 8b00222	2018	TiO2	0	Cs0.1(FA0.8 3MA0.17)0.9 Pb(Br0.1710. 83)3	one-step	printed	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	15.3
Ng, C. H. et al., Sci. Rep. 8, 2482 (2018)	2018	TiO2	mTiO2	CsPbBr3	two-step	spin-dip	no	DMF	РЗНТ	no	3.1
Ng, C. H. et al., Sci. Rep. 8, 2482 (2018)	2018	TiO2	mTiO2	CsPbBr2.9l0 . 1	two-step	spin-dip	no	DMF	РЗНТ	no	2.5
Ng, C. H. et al., Sci. Rep. 8, 2482 (2018)	2018	TiO2	mTiO2	CsPbBr2.9I0 . 1	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	4
Ng, C. H. et al., Sci. Rep. 8, 2482 (2018)	2018	TiO2	mTiO2	CsPbBr3	two-step	spin-dip	no	DMF	spiro-OMeTAD	Li+TBP	3
Nimens, W. J. et al., ACS Appl. Energy Mater. 1, acsaem.7b00147 (2018)	2018	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	ΡΤΑΑ	Li+TBP	13.5

Nimens, W. J. et al., ACS Appl. Energy Mater. 1, acsaem.7b00147 (2018)	2018	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	ΡΤΑΑ	Li+TBP	6.3
Nimens, W. J. et al., ACS Appl. Energy Mater. 1, acsaem.7b00147 (2018)	2018	0	mTiO2	MAPbl3-xClx	one-step	spin	no	DMF	ΡΤΑΑ	Li+TBP	7.7
Suk, K., Thin Solid Films (2018). doi:10.1016/j.tsf.2018 .04.017	2018	ZnO	0	FAPbl3- MAPbBr3	one-step	spin 2-3	toluene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	14.9
Suk, K., Thin Solid Films (2018). doi:10.1016/j.tsf.2018 .04.017	2018	ZnO	0	FAPbl3- MAPbBr3	one-step	spin 2-3	toluene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	13.7
Pelicano, C. M. and Yanagi, H., J. Energy Chem. 27, 455–462 (2018)	2018	ZnO	ZnO- nanorod	МАРЫЗ	one-step	spin	toluene	DMF	РЗНТ	no	4.9
Pelicano, C. M. and Yanagi, H., J. Energy Chem. 27, 455–462 (2018)	2018	ZnO	ZnO- nanorod	МАРЫЗ	one-step	spin	toluene	DMF	РЗНТ	no	3.4
Que, M. et al., J. Power Sources 383, 42–49 (2018)	2018	TiO2	mTiO2	MAPbI3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	15
Que, M. et al., J. Power Sources 383, 42–49 (2018)	2018	TiO2	mTiO2	MAPbI3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.9
Raminafshar, C. et al., Electrochim. Acta 276, 261–267 (2018)	2018	TiO2	mZrO2	(5- AVA) x (MA) 1-xPbl3	one-step	drip	no	GBL	no	no	10.7
Shao, F. et al., Sci. Rep. 8, 7033 (2018)	2018	TiO2	mTiO2	MAPb13	one-step	spin 2-3	trifluorotoluen e	DMSO	spiro-OMeTAD	Li+TBP+FK 209	16.4

Shao, F. et al., Sci. Rep. 8, 7033 (2018)	2018	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	trifluorotoluen e	DMSO	spiro-OMeTAD	Li+TBP+FK 209	8.3
Son, DY. et al., J. Am. Chem. Soc. 140, jacs.7b10430 (2018)	2018	TiO2	mTiO2	MAPbl3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.5
Son, DY. et al., J. Am. Chem. Soc. 140,jacs.7b10430 (2018)	2018	TiO2	mTiO2	FAPb13	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	14.8
Son, DY. et al., J. Am. Chem. Soc. 140, jacs.7b10430 (2018)	2018	TiO2	mTiO2	FA0.85MA0. 1Cs0.05Pbl2 .7Br0.3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.6
Son, DY. et al., J. Am. Chem. Soc. 140, jacs.7b10430 (2018)	2018	TiO2	mTiO2	FA0.85MA0. 15Pbl2.55Br 0.45	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.8
Son, DY. et al., J. Am. Chem. Soc. 140, jacs.7b10430 (2018)	2018	TiO2	mTiO2	MAPbI3	one-step	spin	diethyl ether	DMF+DMSO +KI	spiro-OMeTAD	Li+TBP	17.2
Son, DY. et al., J. Am. Chem. Soc. 140, jacs.7b10430 (2018)	2018	TiO2	mTiO2	FAPbl3	one-step	spin	diethyl ether	DMF+DMSO +KI	spiro-OMeTAD	Li+TBP	10.7
Son, DY. et al., J. Am. Chem. Soc. 140, jacs.7b10430 (2018)	2018	TiO2	mTiO2	FA0.85MA0. 1Cs0.05Pbl2 .7Br0.3	one-step	spin	diethyl ether	DMF+DMSO +KI	spiro-OMeTAD	Li+TBP	18.8
Son, DY. et al., J. Am. Chem. Soc. 140, jacs.7b10430 (2018)	2018	TiO2	mTiO2	FA0.85MA0. 15Pbl2.55Br 0.45	one-step	spin	diethyl ether	DMF+DMSO +KI	spiro-OMeTAD	Li+TBP	17.9
Sun, K. et al., ACS Appl. Energy Mater. acsaem.8b00160 (2018). doi:10.1021/acsaem. 8b00160	2018	TiO2	0	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	18.5

Sun, K. et al., ACS Appl. Energy Mater. acsaem.8b00160 (2018). doi:10.1021/acsaem. 8b00160	2018	TiO2	0	MAPbl3	two-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	14.3
Wang, Q., J. Phys. Chem. C 122, 4822– 4827 (2018)	2018	TiO2	0	MAPbl2.85B r 0.15	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	6.8
Wang, Q., J. Phys. Chem. C 122, 4822– 4827 (2018)	2018	TiO2	mTiO2	MAPbl2.85B r 0.15	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	6.5
Wang, B. et al., Journal of Energy Chemistry 27, 736– 741 (2017)	2018	TiO2	mTiO2	MAPbI3	one-step	spin	ethylacetate	DMF+DMSO	spiro-OMeTAD	no	16.6
Xu, Z. et al., J. Mater. Chem. C 6, 4746– 4752 (2018)	2018	TiO2	0	MAPbl3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	13.4
Xu, Z. et al., J. Mater. Chem. C 6, 4746– 4752 (2018)	2018	TiO2	0	MAPbI3-xClx	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.7
Ye, QQ. et al., ACS Energy Lett. 3, 875– 882 (2018)	2018	TiO2	0	MAPbI3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	no	16.3
Ye, QQ. et al., ACS Energy Lett. 3, 875– 882 (2018)	2018	TiO2	bis-PCBM- DMC	MAPbI3	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	no	20.1
Ye, QQ. et al., ACS Energy Lett. 3, 875–882 (2018)	2018	TiO2	bis-PCBM	MAPb13	one-step	spin	chlorobenzene	DMF	spiro-OMeTAD	no	17.8
Zhang, M. et al., Sol. RRL 2, 1700213 (2018)	2018	TiO2	0	FAI, CsI, PbI2, MABr,PbBr2	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	19.1

Zhang, M. et al., Sol. RRL 2, 1700213				FAI, CsI,			mothovy/bonzo				
(2018)	2018	TiO2	0	PbI2,	one-step	spin 2-3	neuloxybelize	DMF+DMSO	spiro-OMeTAD	200	19.4
				MABr,PbBr2			The			209	
Zhang, R. et al., Electrochim. Acta 265, 98–											
106 (2018)	2018	TiO2	m l iO2	MAPbI3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	LI+IBP	16.2
Zhang, R. et al., Electrochim. Acta				Csl, FAl,							
265, 98–106 (2018)	2018	TiO2	mTiO2	Pbl2, MABr,	one-step	spin 2-3	chlorobenzene	DMF+DMSO	spiro-OMeTAD	LI+TBP+FK	18.2
				PbBr2						209	
Zhao, X. et al., Nano Lett. 18, 2442–2449				FA0.75MA0.							
(2018)	2018	SnO2	0	15Cs0.1Pbl2	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	20.2
				.65Br0.35							
Zhao, X. et al., Nano Lett. 18, 2442–2449				FA0.75MA0.							
(2018)	2018	SnO2	0	15Cs0.1Pbl2	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	19
				.65Br0.35							
Zhao, X. et al., Nano Lett. 18, 2442–2449				FA0.75MA0.							
(2018)	2018	SnO2	0	15Cs0.1Pbl2	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.8
				.65Br0.35							
Zhao, X. et al., Nano Lett. 18, 2442–2449				FA0.83MA0.							
(2018)	2018	SnO2	0	17Pbl2.63Br	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	15.2
				0.37							
Zhao, X. et al., Nano Lett. 18, 2442–2449		NDL		FA0.83MA0.							
(2018)	2018	graphe ne	0	17Pbl2.63Br	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	9.8
		graphe he		0.37							
Zhao, Y. et al., Nat. Commun. 9, 1607				Cs10							
(2018)	2019	TiO2	0	(Cs0.1FA0.7	two stop	cnin	20				21.7
	2010	1102		8MA0.12Pbl	iwo-siep	эрш	10		Spiro-Olvie rAD	LITIDE	21.7
				2.55Br0.45)							

Ng, C. H. et al., Sci. Rep. 8, 2482 (2018)	2018	TiO2	0	PbI2/FAI/MA Br/MACI	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.4
Zhu, W. et al., Dalt. Trans. 47, 6404– 6411 (2018)	2018	TiO2	0	MAPbl3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	17.9
Thermodynamically stabilized b-CsPbI3– based perovskite solar cells with efficiencies >18%	2019	TiO2	no	CsPbI3	one-step	spin	no	DMF	spiro-OMeTAD	no	18.4
Surface passivation of perovskite film for efficient solar cells	2019	SnO2	no	FA-MA	two-step	spin	no	DMF+DMSO +others	spiro-OMeTAD	Li+TBP	23.32
Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells approach for highly-stable and efficient perovskite solar cells	2019	SnO2	no	MAPb13	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	16.97
Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells approach for highly-stable and efficient perovskite solar cells	2019	SnO2	no	MAPb13	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.65
Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells approach for highly-stable and efficient perovskite	2019	SnO2	no	MAPbI3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.09

solar cells											
Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells approach for highly-stable and efficient perovskite solar cells	2019	SnO2	no	MAPb13	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.35
Single-Crystal MAPb13 Perovskite Solar Cells Exceeding 21% Power Conversion Efficiency	2019	ΡΤΑΑ	C60	MAPb13	one-step	spin	no	no	ΡΤΑΑ	no	21.09
Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)	2019	TiO2	TiO2	FA-MA	one-step	spin	diethyl ether	DMF+DMSO	РЗНТ	no	22.67
Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%	2019	TiO2	no	MAPbl3	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	20.27
Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%	2019	TiO2	no	FA-MA	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	21.23
Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions	2019	TiO2	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	19.5
Ultrahydrophobic 3D/2D fluoroarene bilayer- based water-resistant perovskite solar cells with efficiencies exceeding 22%	2019	TiO2	TiO2	others	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	19.74
Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells	2019	TiO2	TiO2	FA-MA	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP+TF SI	24.02

Strain engineering in perovskite solar cells and its impacts on carrier dynamics	2019	SnO2	no	Cs-FA-MA	one-step	spin	toluene	DMF+DMSO	spiro-OMeTAD	Li+TBP+TF SI	20.7
Temperature Impact on Perovskite Solar Cells Under Operation	2019	TiO2	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	11.4
Impedance analysis of perovskite solar cells: a case study	2019	TiO2	TiO2	MAPb13	one-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP+TF SI	16.25
Impedance analysis of perovskite solar cells: a case study	2019	TiO2	TiO2	CsPbI3	two-step	spin	no	DMF+others	spiro-OMeTAD	Li+TBP	4.5
Record Open-Circuit Voltage Wide-Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure	2019	SnO2	no	Cs-FA-MA	two-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.4
Structurally Reconstructed CsPbl2Br Perovskite for Highly Stable and Square- Centimeter All-Inorganic Perovskite Solar Cells	2019	ZnO	C60	CsPbl3	two-step	spin	no	DMSO	others	no	10.4
CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency	2019	TiO2	TiO2	MAPbI3	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	20.46
Precise Control of Crystal Growth for Highly Efficient CsPbl2Br Perovskite Solar Cells	2019	TiO2	no	CsPbl3	one-step	spin	IPA	DMSO	spiro-OMeTAD	Li+TBP	15.75
Dual Interfacial Design for Efficient CsPbl2Br Perovskite Solar Cells with Improved Photostability	2019	SnO2	others	CsPbI3	two-step	spin	no	DMF+DMSO	others	no	16.2
Dual Interfacial Design for Efficient CsPbl2Br Perovskite Solar Cells with Improved	2019	SnO2	others	CsPbI3	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	15.1
Photostability											
---	------	------	----	----------	----------	------	---------	---------------------	--------------	------------------	------
Dual Interfacial Design for Efficient CsPbl2Br Perovskite Solar Cells with Improved Photostability	2019	SnO2	no	CsPbl3	two-step	spin	no	DMF+DMSO	others	no	13
Dual Interfacial Design for Efficient CsPbl2Br Perovskite Solar Cells with Improved Photostability	2019	SnO2	no	CsPbI3	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	12.3
Planar perovskite solar cells with long-term stability using ionic liquid additives	2019	NiOx	no	Cs-FA-MA	one-step	spin	anisole	others	PCBM	others	19.8
Planar perovskite solar cells with long-term stability using ionic liquid additives	2019	NiOx	no	Cs-FA-MA	one-step	spin	anisole	DMF+DMSO +others	РСВМ	others	18.5
Role of Gel2 and SnF2 additives for SnGe perovskite solar cells	2019	PCBM	no	Cs-FA-MA	one-step	spin	no	DMF+DMSO	PEDOT:PSS	others	7.9
Highly Efficient Semitransparent Perovskite Solar Cells for Four Terminal Perovskite- Silicon Tandems	2019	SnO2	no	Cs-FA	one-step	spin	no	DMSO	spiro-OMeTAD	Li+TBP+FK 209	17.2
Highly Efficient Semitransparent Perovskite Solar Cells for Four Terminal Perovskite- Silicon Tandems	2019	TiO2	no	Cs-FA-MA	one-step	spin	no	no	spiro-OMeTAD	Li+TBP+FK 209	16.8
Highly Efficient Semitransparent Perovskite Solar Cells for Four Terminal Perovskite- Silicon Tandems	2019	SnO2	no	Cs-FA-MA	one-step	spin	no	DMSO	spiro-OMeTAD	Li+TBP+FK 209	13.7
Highly Efficient Semitransparent Perovskite Solar Cells for Four Terminal Perovskite- Silicon Tandems	2019	TiO2	no	Cs-FA	one-step	spin	no	no	spiro-OMeTAD	Li+TBP+FK 209	14.3

Highly Stable and Efficient FASnI3-Based Perovskite Solar Cells by Introducing Hydrogen Bonding	2019	BCP	C60	FASnl3	one-step	spin	chlorobenzene	DMSO	PEDOT:PSS	no	6.4
Highly Stable and Efficient FASnI3-Based Perovskite Solar Cells by Introducing Hydrogen Bonding	2019	BCP	C60	FASnl3	one-step	spin	chlorobenzene	DMSO	PEDOT:PSS	no	6.4
Self-Assembled 2D Perovskite Layers for Efficient Printable Solar Cells	2019	PEDOT:PSS	no	others	one-step	others	no	DMF	РСВМ	others	14.5
Self-Assembled 2D Perovskite Layers for Efficient Printable Solar Cells	2019	PEDOT:PSS	no	others	one-step	others	no	DMF	РСВМ	others	12.5
Self-Assembled 2D Perovskite Layers for Efficient Printable Solar Cells	2019	PEDOT:PSS	no	others	one-step	others	no	DMF	РСВМ	others	8
Pb-Reduced CsPb0.9Zn0.1l2Br Thin Films for Efficient Perovskite Solar Cells	2019	c-TiO2	no	CsPbl3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	13.6
Pb-Reduced CsPb0.9Zn0.1l2Br Thin Films for Efficient Perovskite Solar Cells	2019	c-TiO2	no	CsPbl3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	11.8
Robust Tin-based Perovskite Solar cells with Hybrid Organic Cations to Attain Efficiency Approaching 10%	2019	BCP	C60	FASnl3	one-step	spin	chlorobenzene	DMSO	PEDOT:PSS	no	7.4
Cation influence on carrier dynamics in perovskite solar cells	2019	TiO2	TiO2	FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	16.5
Cation influence on carrier dynamics in perovskite solar cells	2019	TiO2	TiO2	FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.1

Cation influence on carrier dynamics in perovskite solar cells	2019	TiO2	TiO2	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.9
Cation influence on carrier dynamics in perovskite solar cells	2019	TiO2	TiO2	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.1
Bilateral alkylamine for suppressing charge recombination and improving stability in blade- coated perovskite solar cells	2019	TiO2	TiO2	Cs-FA-MA	one-step	spin-drip	no	DMF	ΡΤΑΑ	no	15.02
Bilateral alkylamine for suppressing charge recombination and improving stability in blade- coated perovskite solar cells	2019	BCP	C60	Cs-FA-MA	one-step	spin-drip	no	DMF	ΡΤΑΑ	no	20.36
Bilateral alkylamine for suppressing charge recombination and improving stability in blade- coated perovskite solar cells	2019	BCP	C60	MAPbI3	one-step	spin-drip	no	DMF	ΡΤΑΑ	no	16.45
Bilateral alkylamine for suppressing charge recombination and improving stability in blade- coated perovskite solar cells	2019	BCP	C60	MAPbI3	one-step	spin-drip	no	DMF	ΡΤΑΑ	no	20.53
Bilateral alkylamine for suppressing charge recombination and improving stability in blade- coated perovskite solar cells	2019	BCP	C60	Cs-FA	one-step	spin-drip	no	DMF	ΡΤΑΑ	no	11.78
Bilateral alkylamine for suppressing charge recombination and improving stability in blade- coated perovskite solar cells	2019	ВСР	C60	Cs-FA	one-step	spin-drip	no	DMF	ΡΤΑΑ	no	13.87
Targeted Therapy for Interfacial Engineering Toward Stable and Efficient Perovskite Solar Cells	2019	others	PCBM	MAPbI3	one-step	spin	chlorobenzene	DMF+DMSO	ΡΤΑΑ	no	21.8

Targeted Therapy for Interfacial Engineering Toward Stable and Efficient Perovskite Solar Cells	2019	others	no	MAPb13	one-step	spin	chlorobenzene	DMF+DMSO	ΡΤΑΑ	no	18.61
Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells	2019	SnO2	no	MAPb13	one-step	spin	diethyl ether	DMF+DMSO	ΡΤΑΑ	no	16.92
Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells	2019	SnO2	no	MAPbl3	one-step	spin	diethyl ether	DMF+DMSO	ΡΤΑΑ	no	17.74
Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells	2019	SnO2	no	MAPb13	one-step	spin	diethyl ether	DMF+DMSO	ΡΤΑΑ	no	19.87
Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells	2019	SnO2	no	MAPbl3	one-step	spin	diethyl ether	DMF+DMSO	ΡΤΑΑ	no	18.4
Self-Seeding Growth for Perovskite Solar Cells with Enhanced Stability	2019	TiO2	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.76
Controlling competing photochemical reactions stabilizes perovskite solar cells	2019	SnO2	C60	MAPb13	one-step	spin	toluene	DMF+DMSO	spiro-OMeTAD	Li+TBP	15.05
Highly Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the Perovskite/Carbon Electrode Interface	2019	TiO2	TiO2	Cs-FA	one-step	spin	IPA	DMF+DMSO	Without HTL	no	10.1
Rapid Crystallization for Efficient 2D Ruddlesden–Popper (2DRP) Perovskite Solar Cells	2019	PEDOT:PSS	no	MAPbl3	one-step	others	no	DMF	PCBM	others	7.33
Rapid Crystallization for Efficient 2D Ruddlesden–Popper (2DRP) Perovskite Solar Cells	2019	PEDOT:PSS	no	MAPbl3	one-step	others	no	DMSO	PCBM	others	8.13

Rapid Crystallization for Efficient 2D Ruddlesden–Popper (2DRP) Perovskite Solar	2019	PEDOT:PSS	no	MAPbI3	one-step	others	no	DMAC	PCBM	others	12.15
Cells											
Unveiling the operation mechanism of layered perovskite solar cells	2019	PCBM	no	MAPb13	one-step	spin	no	DMF	ΡΤΑΑ	no	12.7
Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar	2019	SnO2	no	Cs-FA-MA	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	21.01
cells						-					
Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells	2019	SnO2	no	Cs-FA-MA	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.97
Mechanism of Pbl2 In Situ Passivated Perovskite Films for Enhancing Performance of Perovskite Solar Cells	2019	SnO2	no	FA-MA	one-step	spin	IPA	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.61
Mixed-cation perovskite solar cells in space	2019	TiO2	no	Cs-FA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	6.41
Mixed-cation perovskite solar cells in space	2019	TiO2	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	6.28
Interface-Modification-Induced Gradient Energy Band for Highly Efficient CsPbIBr2 Perovskite Solar Cells	2019	TiO2	no	CsPbl2Br	one-step	spin	no	DMSO	spiro-OMeTAD	Li+TBP	8.37
Mechanism of Pbl2 In Situ Passivated Perovskite Films for Enhancing Performance of Perovskite Solar Cells	2019	SnO2	no	FA-MA	two-step	spin	IPA	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.61
Perovskite Cluster-Containing Solution for Scalable D-Bar Coating toward	2019	SnO2	no	MAPbl3	one-step	others	no	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	17.01

HighThroughput Perovskite Solar Cells											
Europium-Doped CsPbl2Br for Stable and Highly Efficient Inorganic Perovskite Solar Cells	2019	TiO2	TiO2	CsPbI3	one-step	spin	no	DMSO	spiro-OMeTAD	Li+TBP+FK 209	10.21
Europium-Doped CsPbl2Br for Stable and Highly Efficient Inorganic Perovskite Solar Cells	2019	TiO2	TiO2	CsPbI3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	12.37
Europium-Doped CsPbl2Br for Stable and Highly Efficient Inorganic Perovskite Solar Cells	2019	TiO2	TiO2	CsPbI3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	13.18
Europium-Doped CsPbl2Br for Stable and Highly Efficient Inorganic Perovskite Solar Cells	2019	TiO2	TiO2	CsPbI3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	13.71
Europium-Doped CsPbl2Br for Stable and Highly Efficient Inorganic Perovskite Solar Cells	2019	TiO2	TiO2	CsPbI3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	12.45
Europium-Doped CsPbl2Br for Stable and Highly Efficient Inorganic Perovskite Solar Cells	2019	TiO2	TiO2	CsPbI3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	10.97
Controllable Perovskite Crystallization via Antisolvent Technique Using Chloride Additives for Highly Efficient Planar Perovskite Solar Cells	2019	SnO2	no	FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	19.7
Controllable Perovskite Crystallization via Antisolvent Technique Using Chloride Additives for Highly Efficient Planar Perovskite	2019	SnO2	no	FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	18.65

Solar Cells											
Quantifying the Interface Defect for the Stability Origin of Perovskite Solar Cells	2019	TiO2	no	MAPb13	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	no	17.9
Quantifying the Interface Defect for the Stability Origin of Perovskite Solar Cells	2019	TiO2	PCBA	MAPbl3	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	no	20.1
Quantifying the Interface Defect for the Stability Origin of Perovskite Solar Cells	2019	no	no	MAPb13	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	no	13.2
Quantifying the Interface Defect for the Stability Origin of Perovskite Solar Cells	2019	TiO2	no	MAPb13	one-step	spin	chlorobenzene	DMF+DMSO	Without HTL	no	3.2
Quantifying the Interface Defect for the Stability Origin of Perovskite Solar Cells	2019	TiO2	no	MAPb13	one-step	spin	chlorobenzene	DMF+DMSO	Without HTL	no	7.4
Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells	2019	BCP	C60	Cs-FA-MA	one-step	spin	no	DMF+DMSO	ΡΤΑΑ	no	21.4
High-Performance Flexible Perovskite Solar Cells via Precise Control of Electron Transport Layer	2019	SnO2	no	Cs-FA-MA	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.5
Interfacial Residual Stress Relaxation in Perovskite Solar Cells with Improved Stability	2019	SnO2	no	FA-MA	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	20.406
Efficient and Stable Inverted Perovskite Solar Cells Incorporating Secondary Amines	2019	ВСР	C60	MAPbl3	one-step	spin	toluene	DMF+DMSO	others	no	18.2
Efficient and Stable Inverted Perovskite Solar Cells Incorporating Secondary Amines	2019	BCP	C60	FA-MA	one-step	spin	toluene	DMF+DMSO	others	no	18.6

Efficient and Stable Inverted Perovskite Solar Cells Incorporating Secondary Amines	2019	BCP	C60	FA-MA	one-step	spin	toluene	DMF+DMSO	others	no	20.9
Efficient and Stable Inverted Perovskite Solar Cells Incorporating Secondary Amines	2019	BCP	C60	FA-MA	one-step	spin	toluene	DMF+DMSO	others	no	21.2
Efficient and Stable Inverted Perovskite Solar Cells Incorporating Secondary Amines	2019	BCP	C60	FA-MA	one-step	spin	toluene	DMF+DMSO	others	no	21.6
Efficient and Stable Inverted Perovskite Solar Cells Incorporating Secondary Amines	2019	ВСР	C60	FA-MA	one-step	spin	toluene	DMF+DMSO	others	no	19.7
A new polytriarylamine derivative for dopant- free high-efficiency perovskite solar cells	2019	SnO2	PCBM	MAPbl3	one-step	spin	no	DMF+DMSO	ΡΤΑΑ	no	17
A new polytriarylamine derivative for dopant- free high-efficiency perovskite solar cells	2019	SnO2	PCBM	Cs-FA	one-step	spin	no	DMF+DMSO	ΡΤΑΑ	no	16
Efficient perovskite solar cells by hybrid perovskites incorporated with heterovalent neodymium cations	2019	PEDOT:PSS	no	МАРЫЗ	two-step	spin	no	DMF+DMSO	PC61BM	no	17.12
Energy Alignment and Recombination in Perovskite Solar Cells: Weighted Influence on the Open Circuit Voltage	2019	TiO2	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.4
Energy Alignment and Recombination in Perovskite Solar Cells: Weighted Influence on the Open Circuit Voltage	2019	TiO2	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	others	Li+TBP	14.3
Energy Alignment and Recombination in Perovskite Solar Cells: Weighted Influence on the Open Circuit Voltage	2019	TiO2	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	others	Li+TBP	15.3

Energy Alignment and Recombination in Perovskite Solar Cells: Weighted Influence on the Open Circuit Voltage	2019	TiO2	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	others	Li+TBP	16.5
Solution-Phase Epitaxial Growth of Perovskite Films on 2D Material Flakes for High-Performance Solar Cells	2019	PCBM	no	MAPbl3	one-step	spin	diethyl ether	DMF+DMSO	ΡΤΑΑ	no	17.55
Pb-Reduced CsPb0.9Zn0.1l2Br Thin Films for Efficient Perovskite Solar Cells	2019	TiO2	no	CsPbl3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	13.6
Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells	2019	TiO2	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	20.5
Ultrahigh Durability Perovskite Solar Cells	2019	TiO2	TiO2	MAPbl3	one-step	spin	toluene	DMSO+GBL	spiro-OMeTAD	no	18.7
Dion-Jacobson Two-Dimensional Perovskite Solar Cells Based on Benzene Dimethanammonium Cation	2019	TiO2	TiO2	others	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	15.6
A Novel Anion Doping for Stable CsPbl2Br Perovskite Solar Cells with an Efficiency of 15.56% and an Open Circuit Voltage of 1.30 V	2019	TiO2	no	CsPbl3	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	15.56
Highly stable semi-transparent MAPbl3 perovskite solar cells with operational output for 4000 h	2019	PCBM	no	MAPbI3	two-step	spin	no	DMF	ΡΤΑΑ	no	12.5
Interfacial Engineering at the 2D/3D Heterojunction for HighPerformance Perovskite Solar Cells	2019	TiO2	no	FAPbl3	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.02

Role of Gel2 and SnF2 additives for SnGe perovskite solar cells	2019	PCBM	C60	FA-MA	one-step	spin	toluene	DMF+DMSO	PEDOT:PSS	no	7.9
A Scalable Methylamine Gas Healing Strategy for High Efficiency Inorganic Perovskite Solar Cells	2019	TiO2	TiO2	CsPbl3	one-step	spin	no	DMSO	spiro-OMeTAD	Li+TBP	13.1
Consistent Device Simulation Model Describing Perovskite Solar Cells in Steady- State, Transient, and Frequency Domain	2019	C60	no	MAPbI3	one-step	SVD	no	no	others	no	10
An optimized perovskite solar cell designs for high conversion efficiency	2019	TiO2	no	СНЗNНЗРЫ 3	one-step	spin	no	no	spiro-OMeTAD	Li+TBP	18.16
An optimized perovskite solar cell designs for high conversion efficiency	2019	TiO2	no	CH3NH3Snl 3	one-step	spin	no	no	spiro-OMeTAD	Li+TBP	9.56
Origin of apparent light-enhanced and negative capacitance in perovskite solar cells	2019	TiO2	TiO2	Cs-FA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	19
Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells	2019	PCBM	C60	ΜΑΡЫЗ	one-step	spin	no	DMF+DMSO	ΡΤΑΑ	no	16.89
Polymeric, Cost-Effective, Dopant-Free Hole Transport Materials for Efficient and Stable Perovskite Solar Cells	2019	SnO2	no	МАРЫЗ	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.7
Preparation of Tortuous 3D γ-CsPbl3 Films at Low Temperature by Cal2 as Dopant for Highly Efficient Perovskite Solar Cells	2019	TiO2	TiO2	others	one-step	spin	no	DMSO	spiro-OMeTAD	Li+TBP	9.32
Tailored Phase Transformation of CsPbl2Br Films by Copper (II) Bromide for HighPerformance All-Inorganic Perovskite	2019	TiO2	no	CsPbl3	one-step	spin	chlorobenzene	DMSO	spiro-OMeTAD	Li+TBP	13.24

Solar Cells											
Pulsed Laser Deposition of CsPbBr3 Films for Application in Perovskite Solar Cells	2019	TiO2	TiO2	CsPbI3	one-step	others	no	no	spiro-OMeTAD	Li+TBP	6.3
Fine Multi-Phase Alignments in 2D Perovskite Solar Cells with Efficiency over 17% via Slow Post-Annealing	2019	ВСР	C60	MAPbl3	one-step	others	no	DMF	ΡΤΑΑ	no	17.16
Fine Multi-Phase Alignments in 2D Perovskite Solar Cells with Efficiency over 17% via Slow Post-Annealing	2019	BCP	C60	MAPb13	one-step	others	no	DMF	PTAA	no	15.6
Polarized Ferroelectric Polymers for High- Performance Perovskite Solar Cells	2019	TiO2	no	others	one-step	spin	chlorobenzene	DMSO	spiro-OMeTAD	no	21.38
Investigation of Oxygen Passivation for High- Performance AllInorganic Perovskite Solar Cells	2019	SnO2	no	CsPbI3	one-step	spin	no	DMSO	spiro-OMeTAD	Li+TBP	13
LiTFSI-Free spiro-OMeTAD-Based Perovskite Solar Cells with Power Conversion Efficiencies Exceeding 19%	2019	TiO2	TiO2	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.5
LiTFSI-Free spiro-OMeTAD-Based Perovskite Solar Cells with Power Conversion Efficiencies Exceeding 19%	2019	TiO2	TiO2	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	no	14.3
Composition Stoichiometry of Cs2AgBiBr6 Films for Highly Efficient Lead-Free Perovskite Solar Cells	2019	TiO2	no	others	one-step	spin	no	DMSO	spiro-OMeTAD	Li+TBP	2.48
Influence of CI Incorporation in Perovskite Precursor on the Crystal Growth and Storage	2019	TiO2	no	FA-MA	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	15.2

Stability of Perovskite Solar Cells											
Influence of Cl Incorporation in Perovskite Precursor on the Crystal Growth and Storage Stability of Perovskite Solar Cells	2019	TiO2	no	FA-MA	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	16.8
Influence of CI Incorporation in Perovskite Precursor on the Crystal Growth and Storage Stability of Perovskite Solar Cells	2019	TiO2	no	FA-MA	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	19.1
Influence of CI Incorporation in Perovskite Precursor on the Crystal Growth and Storage Stability of Perovskite Solar Cells	2019	TiO2	no	FA-MA	one-step	spin	no	DMF	spiro-OMeTAD	Li+TBP	19.2
Efficient and Stable FASnI3 Perovskite Solar Cells with Effective Interface Modulation by Low-Dimensional Perovskite Layer	2019	PCBM	no	FASnl3	one-step	spin	no	no	PEDOT:PSS	no	4.77
Alkali Chlorides for the Suppression of the Interfacial Recombination in Inverted Planar Perovskite Solar Cells	2019	NiOx	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	РСВМ	no	16.67
Highly Efficient and Stable Solar Cells Based on Crystalline Oriented 2D/3D Hybrid Perovskite	2019	SnO2	no	others	two-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	21.1
UV-Inert ZnTiO3 Electron Selective Layer for Photostable Perovskite Solar Cells	2019	ZTO	no	Cs-FA-MA	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.8
UV-Inert ZnTiO3 Electron Selective Layer for Photostable Perovskite Solar Cells	2019	TiO2	no	Cs-FA-MA	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	17.6
Chemical Composition and Phase Evolution in DMAI-Derived Inorganic Perovskite Solar	2019	TiO2	TiO2	Cs-MA	one-step	spin	no	DMSO	spiro-OMeTAD	Li+TBP	14.4

Cells											
Chemical Composition and Phase Evolution in DMAI-Derived Inorganic Perovskite Solar Cells	2019	TiO2	TiO2	CsPbI3	one-step	spin	no	DMSO	spiro-OMeTAD	Li+TBP	10.7
Monoammonium Porphyrin for Blade-Coating Stable Large-Area Perovskite Solar Cells with >18% Efficiency	2019	TiO2	no	MAPbl3	one-step	spin	no	DMF+DMSO	PCBM	no	18.26
Optimal Interfacial Engineering with Different Length of Alkylammonium Halide for Efficient and Stable Perovskite Solar Cells	2019	TiO2	TiO2	FA-MA	one-step	spin	IPA	DMF+DMSO	spiro-OMeTAD	Li+TBP	22.9
Triamine-Based Aromatic Cation as a Novel Stabilizer for Efficient Perovskite Solar Cells	2019	SnO2	no	Cs-FA-MA	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	20.9
Achieving Long-Term Operational Stability of Perovskite Solar Cells with a Stabilized Efficiency Exceeding 20% after 1000 h	2019	TiO2	TiO2	FA-MA	one-step	spin	diethyl ether	DMF+DMSO	ΡΤΑΑ	no	20
NbF5: A Novel α-Phase Stabilizer for FA- Based Perovskite Solar Cells with High Efficiency	2019	TiO2	no	FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.3
Origins of High Performance and Degradation in the Mixed Perovskite Solar Cells	2019	TiO2	no	FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	ΡΤΑΑ	Li+TBP	20.02
Binary solvent engineering for high- performance two-dimensional perovskite solar cells	2019	TiO2	no	MAPbl3	one-step	spin	no	DMF+DMSO	spiro-OMeTAD	Li+TBP	10.3
High-Performance Perovskite Solar Cells with Excellent Humidity and Thermo-Stability via	2019	NiOx	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	РСВМ	others	17.4

Fluorinated Perylenediimide											
High-Performance Perovskite Solar Cells with Excellent Humidity and Thermo-Stability via Fluorinated Perylenediimide	2019	NiOx	no	MAPb13	one-step	spin	chlorobenzene	DMF+DMSO	РСВМ	others	14.78
2D Intermediate Suppression for Efficient RuddlesdenPopper (RP) Phase Lead-Free Perovskite Solar Cells	2019	C60	no	FASnl3	one-step	spin	chlorobenzene	DMF+DMSO	PEDOT:PSS	no	8.82
Improving Charge Transport via Intermediate- Controlled Crystal Growth in 2D Perovskite Solar Cells	2019	TiO2	no	others	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	12
Improving Charge Transport via Intermediate- Controlled Crystal Growth in 2D Perovskite Solar Cells	2019	TiO2	no	MAPbI3	one-step	spin	chlorobenzene	DMSO	spiro-OMeTAD	Li+TBP	6.5
Niobium Incorporation into CsPbl2Br for Stable and Efficient Allinorganic Perovskite Solar Cells	2019	SnO2	no	CsPbl2Br	one-step	spin	no	DMF+DMSO	Without HTL	no	9.05
On the Relation between the Open-Circuit Voltage and Quasi-Fermi Level Splitting in Efficient Perovskite Solar Cells	2019	BCP	C60	Cs-FA-MA	one-step	spin	diethyl ether	DMF+DMSO	ΡΤΑΑ	others	19.4
On the Relation between the Open-Circuit Voltage and Quasi-Fermi Level Splitting in Efficient Perovskite Solar Cells	2019	BCP	C60	Cs-FA-MA	one-step	spin	diethyl ether	DMF+DMSO	РЗНТ	no	14.2
Fabrication of Efficient and Stable CsPbl3 Perovskite Solar Cells through Cation Exchange Process	2019	TiO2	no	CsPbI3	one-step	spin	anisole	DMF	РЗНТ	no	6.8

Low-Frequency Carrier Kinetics in Perovskite Solar Cells	2019	SnO2	no	CH3NH3Pbl 3	one-step	spin	diethyl ether	no	ΡΤΑΑ	no	10
Low-Frequency Carrier Kinetics in Perovskite Solar Cells	2019	SnO2	no	CH3NH3Pbl 3	one-step	spin	diethyl ether	no	spiro-OMeTAD	Li+TBP	15
Overcoming Zinc Oxide Interface Instability with a Methylammonium-Free Perovskite for High-Performance Solar Cells	2019	ZnO	no	Cs-FA	one-step	spin	anisole	DMF+DMSO	spiro-OMeTAD	Li+TBP	18
Overcoming Zinc Oxide Interface Instability with a Methylammonium-Free Perovskite for High-Performance Solar Cells	2019	SnO2	no	Cs-FA	one-step	spin	anisole	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.7
Cation-Exchange Approach for Fabrication of Efficient Methylammonium Tin Iodide Perovskite Solar Cells	2019	TiO2	TiO2	MASnl3	one-step	spin	diethyl ether	DMF+DMSO	ΡΤΑΑ	no	0.11
Cation-Exchange Approach for Fabrication of Efficient Methylammonium Tin Iodide Perovskite Solar Cells	2019	TiO2	TiO2	MASnl3	two-step	spin	diethyl ether	DMF+DMSO	ΡΤΑΑ	no	7.13
High-Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on a (p-FC6H4C2H4NH3)2[Pbl4] Capping Layer	2019	TiO2	TiO2	Cs-FA-MA	two-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	18
Novel Surface Passivation for Stable FA0.85MA0.15Pbl3 Perovskite Solar Cells with 21.6% Efficiency	2019	TiO2	no	FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 210	19.55
Perovskite/Graphene Solar Cells without a Hole-Transport Layer	2019	TiO2	TiO2	HASnI3	two-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	12.6
Perovskite/Graphene Solar Cells without a Hole-Transport Layer	2019	TiO2	TiO2	HASnl3	two-step	spin	diethyl ether	DMF+DMSO	spiro-OMeTAD	Li+TBP	2.8

Enhancing electron diffusion length in narrow-											
bandgap perovskites for efficient monolithic	2019	BCP	C60	Cs-FA	one-step	spin	no	DMF+DMSO	PEDOT:PSS	no	22.7
perovskite tandem solar cells											
Defect passivation using ultrathin PTAA layers											
for efficient and stable perovskite solar cells	2019	РСВМ	no	MAPbI3	one-step	spin	no	GBL+DMSO	PEDOT:PSS	no	16.28
with a high fill factor and eliminated hysteresis											
Interface engineering of low temperature											
processed all-inorganic CsPbl2Br perovskite	2019	SnO2	no	CsPbl2Br	one-step	spin	no	DMSO	spiro-OMeTAD		13.4
solar cells toward PCE exceeding 14%										209	
Inverted All-Inorganic CsPbl2Br Perovskite											
Solar Cells with Promoted Efficiency and	2019	РСВМ	C60	CsPbl2Br	one-step	spin	no	DMSO	P3CT	no	11.8
Stability by Nickel Incorporation											
Inverted All-Inorganic CsPbl2Br Perovskite											
Solar Cells with Promoted Efficiency and	2019	РСВМ	C60	CsPbl3	one-step	spin	no	DMSO	P3CT	no	12.674
Stability by Nickel Incorporation											
Inverted All-Inorganic CsPbl2Br Perovskite											
Solar Cells with Promoted Efficiency and	2019	РСВМ	C60	CsPbI3	one-step	spin	no	DMSO	P3CT	no	12.7
Stability by Nickel Incorporation											
Inverted All-Inorganic CsPbl2Br Perovskite											
Solar Cells with Promoted Efficiency and	2019	РСВМ	C60	CsPbI3	one-step	spin	no	DMSO	P3CT	no	11.1
Stability by Nickel Incorporation											
Inverted All-Inorganic CsPbl2Br Perovskite											
Solar Cells with Promoted Efficiency and	2019	РСВМ	C60	CsPbl3	one-step	spin	no	DMSO	P3CT	no	10.06
Stability by Nickel Incorporation											
Inverted All-Inorganic CsPbl2Br Perovskite											
Solar Cells with Promoted Efficiency and	2019	РСВМ	C60	CsPbI3	one-step	spin	no	DMSO	P3CT	no	4.9
Stability by Nickel Incorporation											

Strain Relaxation and Light Management in											
Tin-Lead Perovskite Solar Cells to Achieve	2019	PCBM	C60	Cs-FA-MA	one-step	spin	toluene	DMF+DMSO	PEDOT:PSS	no	18.92
High Efficiencies											
Strain Relaxation and Light Management in											
Tin-Lead Perovskite Solar Cells to Achieve	2019	PCBM	C60	FA-MA	one-step	spin	toluene	DMF+DMSO	PEDOT:PSS	no	17.69
High Efficiencies											
Strain Relaxation and Light Management in											
Tin-Lead Perovskite Solar Cells to Achieve	2019	PCBM	C60	Cs-FA-MA	one-step	spin	toluene	DMF+DMSO	PEDOT:PSS	no	18.45
High Efficiencies											
Strain Relaxation and Light Management in											
Tin-Lead Perovskite Solar Cells to Achieve	2019	PCBM	C60	Cs-FA-MA	one-step	spin	toluene	DMF+DMSO	PEDOT:PSS	no	17.29
High Efficiencies											
Combustion Synthesized Zinc Oxide Electron-											
Transport Layers for Efficient and Stable	2019	others	no	MAPBI3	one-step	spin	diethyl ethe	DMF+DMSO	spiro-OMeTAD	200	1.98
Perovskite Solar Cells										209	
Combustion Synthesized Zinc Oxide Electron-											
Transport Layers for Efficient and Stable	2019	others	no	MAPBI3	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	200	12.23
Perovskite Solar Cells										209	
Combustion Synthesized Zinc Oxide Electron-											
Transport Layers for Efficient and Stable	2019	others	no	MAPBI3	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	200	16.47
Perovskite Solar Cells										209	
Combustion Synthesized Zinc Oxide Electron-											
Transport Layers for Efficient and Stable	2019	others	no	Cs-FA-MA	one-step	spin	diethyl ethe	DMF+DMSO	spiro-OMeTAD	200	7.23
Perovskite Solar Cells										209	
Combustion Synthesized Zinc Oxide Electron-										l i+TRP+FK	
Transport Layers for Efficient and Stable	2019	others	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	200	14.75
Perovskite Solar Cells										209	

Combustion Synthesized Zinc Oxide Electron- Transport Layers for Efficient and Stable Perovskite Solar Cells	2019	others	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	18.18
Combustion Synthesized Zinc Oxide Electron- Transport Layers for Efficient and Stable Perovskite Solar Cells	2019	others	no	Cs-FA	one-step	spin	diethyl ethe	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	16.06
Combustion Synthesized Zinc Oxide Electron- Transport Layers for Efficient and Stable Perovskite Solar Cells	2019	others	no	Cs-FA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	15.97
Combustion Synthesized Zinc Oxide Electron- Transport Layers for Efficient and Stable Perovskite Solar Cells	2019	others	no	Cs-FA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	19.09
Influence of hole transport material ionization energy on the performance of perovskite solar cells	2019	BCP	C60	MAPBI3	one-step	spin	no	DMF+DMSO	others	no	14.4
Influence of hole transport material ionization energy on the performance of perovskite solar cells	2019	BCP	C60	MAPBI3	one-step	spin	no	DMF+DMSO	others	no	16.3
Influence of hole transport material ionization energy on the performance of perovskite solar cells	2019	BCP	C60	MAPBI3	one-step	spin	no	DMF+DMSO	others	no	12.2
In situ growth of perovskite stacking layers for high-efficiency carbon-based hole conductor free perovskite solar cells	2019	c-TiO2	m-TiO2	MAPBI3	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	10.7
Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive	2019	РСВМ	no	FASnl3	one-step	spin	chlorobenzene	DMF+DMSO	others	no	7.34

Fluorinated Low-Dimensional Ruddlesden-											
Popper Perovskite Solar Cells with over 17%		50514						51/5	5744		10.01
Power Conversion Efficiency and Improved	2019	РСВМ	no	MAPb13	one-step	spin	no	DMF	PIAA	no	16.34
Stability											
Fluorinated Low-Dimensional Ruddlesden-											
Popper Perovskite Solar Cells with over 17%	0010	DODM		MARLIO				DME	DTAA		0.7
Power Conversion Efficiency and Improved	2019	РСВМ	no	MAPDI3	one-step	spin	no	DMF	PIAA	no	9.7
Stability											
Amphiphilic Fullerenes Employed to Improve											
the Quality of Perovskite Films and the	2019	PCBM	BCP	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	others	no	14.36
Stability of Perovskite Solar Cells											
Flexible quintuple cation perovskite solar cells											
with high efficiency	2019	SnO2	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.32
Elevible quintuple cation perovskite solar cells											
with high efficiency	2019	SnO2	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	18.68
Flexible quintuple cation perovskite solar cells	2019	SnO2	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.03
with high efficiency						•					
Flexible quintuple cation perovskite solar cells		0.00		0 51 14							10.10
with high efficiency	2019	Sh02	no	CS-FA-MA	one-step	spin	chioropenzene	DMF+DMSO	spiro-Ome I AD	LI+TBP	19.46
Flexible quintuple cation perovskite solar cells											
with high efficiency	2019	SnO2	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	19.75
Flexible quintuple cation perovskite solar cells	2019	SnO2	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	20.13
with high efficiency											
Flexible quintuple cation perovskite solar cells	2019	SnO2	no	Cs-FA-MA	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP	19 15
with high efficiency		5		501711001	2110 0100	op					

Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells	2019	TiO2	TiO2	MAPbl3	one-step	spin	chlorobenzene	DMF+DMSO	spiro-OMeTAD	Li+TBP+FK 209	15.2
Perovskite Ink with an Ultrawide Processing Window for Efficient and Scalable Perovskite Solar Cells in Ambient Air	2019	SnO2	no	MAPbl3	two-step	spin	diethyl ethe	DMF+DMSO +others	spiro-OMeTAD	Li+TBP+FK 209	11.8
A Low-temperature carbon electrode with benign perovskite compatibility and high flexibility in Carbon based perovskite solar cells	2019	TiO2	TiO2	Cs-FA-MA	one-step	spin	no	DMF+DMSO	Without HTL	no	11.7
A Low-temperature carbon electrode with benign perovskite compatibility and high flexibility in Carbon based perovskite solar cells	2019	TiO2	TiO2	Cs-FA-MA	one-step	spin	no	DMF+DMSO	PEDOT:PSS	no	13.6
A Low-temperature carbon electrode with benign perovskite compatibility and high flexibility in Carbon based perovskite solar cells	2019	SnO2	no	Cs-FA-MA	one-step	spin	no	DMF+DMSO	PEDOT:PSS	no	7.04
Dopant-Free, Amorphous–Crystalline Heterophase SnO2 Electron Transport Bilayer Enables >20% Efficiency in Triple-Cation Perovskite Solar Cells	2020	Bi-SnO2	no	Cs0.05(FAP bl3)0.85(MA PbBr3)0.15	one-step	spin 2-3	ethyl acetate+hexan e	DMF+DMSO	Spiro-OMeTAD	Li+TBP	20.39
Dopant-Free, Amorphous–Crystalline Heterophase SnO2 Electron Transport Bilayer Enables >20% Efficiency in Triple-Cation Perovskite Solar Cells	2020	SG-SnO2	no	Cs0.05(FAP bl3)0.85(MA PbBr3)0.15	one-step	spin 2-3	ethyl acetate+hexan e	DMF+DMSO	Spiro-OMeTAD	Li+TBP	18.67

Dopant-Free, Amorphous–Crystalline Heterophase SnO2 Electron Transport Bilayer Enables >20% Efficiency in Triple-Cation Perovskite Solar Cells FAPbI3-Based Perovskite Solar Cells Employing Hexyl-Based Ionic Liquid with an Efficiency Over 20% and Excellent Long-Term	2020 2020	NP-SnO2 TiO2	no mTiO2	Cs0.05(FAP bl3)0.85(MA PbBr3)0.15 FAPbl3-HMll	one-step one-step	spin 2-3 spin 2-3	ethyl acetate+hexan e chlorobenzene	DMF+DMSO DMF+DMSO	Spiro-OMeTAD Spiro-OMeTAD	Li+TBP Li+TBP	18.49 20.6
Stability											
FAPbl3-Based Perovskite Solar Cells											
Employing Hexyl-Based Ionic Liquid with an	2020	TiO2	mTiO2	EADHI3	one sten	spin 2-3	chlorobenzene		Spiro-OMeTAD		17 1
Efficiency Over 20% and Excellent Long-Term	2020	1102	111102		one-step	3pin 2-3	Chioroberizene		Spilo-Ome TAD		17.1
Stability											
TiO2/WO3 Bilayer as Electron T ransport											
Layer for Efficient Planar Perovskite Solar Cell	2020	TiO2	WO3	MAPbl3	two-step	spin	no	DMF	Spiro-OMeTAD	Li+TBP	20.14
with Efficiency Exceeding 20%											
Acetic Acid Assisted Crystallization Strategy				Cs0.05FA0.8							
for High Efficiency and Long-T erm Stable	2020	TiO2	mTiO2	0MA0.15Pb(I	one-step	spin 2-3	acetic acid	DMF+DMSO	Spiro-OMeTAD	Li+TBP	22
Perovskite Solar Cell				0.85Br0.15)3							
Acetic Acid Assisted Crystallization Strategy				Cs0.05FA0.9							
for High Efficiency and Long-T erm Stable	2020	TiO2	mTiO2	0MA0.05Pb(I	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	23
Perovskite Solar Cell				0.95Br0.05)3							
Low-Temperature-Processed WOxas Electron											
Transfer Layer for Planar Perovskite Solar	2020	E-WOx	no	MAPbl3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	14.32
Cells Exceeding 20% Efficiency											
Low-Temperature-Processed WOxas Electron											
Transfer Layer for Planar Perovskite Solar	2020	B-WOx	no	MAPbl3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	17.85
Cells Exceeding 20% Efficiency											

Low-Temperature-Processed WOxas Electron											
Transfer Layer for Planar Perovskite Solar	2020	H-WOx	no	MAPbI3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	19.16
Cells Exceeding 20% Efficiency											
Low-Temperature-Processed WOxas Electron				(FAPbI3)1-							
Transfer Layer for Planar Perovskite Solar	2020	H-WOx	no	x(MAPbBr3)	two-step	spin	no		Spiro-OMeTAD	Li+TBP	20.77
Cells Exceeding 20% Efficiency				x				TIPA			
Over 20% Efficiency in Methylammonium											
Lead lodide Perovskite Solar Cells with	2020		20		ana atan	onin	20	DME	Spire OMeTAD		20.42
Enhanced Stability via "in Situ Solidification" of	2020	CL-GP HOZ	no	WAPDI3	one-step	spin	no	DIVIF	Spiro-Omerad	LITIDP	20.43
the TiO2 Compact Layer											
Over 20% Efficiency in Methylammonium											
Lead lodide Perovskite Solar Cells with	2020			MADELO				DME			47.54
Enhanced Stability via "in Situ Solidification" of	2020	CL-ND HOZ	no	MAPDI3	one-step	spin	no	DIMF	Spiro-Olivie I AD	LI+TBP	17.51
the TiO2 Compact Layer											
Mediator-Antisolvent Strategy to Stabilize All-							DCRMLablara				
Inorganic CsPbI3 for Perovskite Solar Cells	2020	SnO2	no	MAI-CsPbI3	one-step	spin	PCDIVI+CIIIOIO	DMF	Spiro-OMeTAD	Li+TBP	16.04
with Efficiency Exceeding 16%							Denzene				
Mediator-Antisolvent Strategy to Stabilize All-							PCPM+ablara				
Inorganic CsPbI3 for Perovskite Solar Cells	2020	SnO2	no	CsPbl3	one-step	spin	FCBIWI+CIIIOIO	DMF	Spiro-OMeTAD	Li+TBP	14.34
with Efficiency Exceeding 16%							Denzene				
Mediator-Antisolvent Strategy to Stabilize All-											
Inorganic CsPbI3 for Perovskite Solar Cells	2020	SnO2	no	CsPbl3	one-step	spin	chlorobenzene	DMF	Spiro-OMeTAD	Li+TBP	10.6
with Efficiency Exceeding 16%											
Dual Functions of Crystallization Control and											
Defect Passivation Enabled by an lonic	0000	0.00									00.00
Compensation Strategy for Stable and High-	2020	SnO2	no		one-step	spin	etnyi acetate		Spiro-Ome i AD	LI+IRK	20.39
Efficient Perovskite Solar Cells											

Dual Functions of Crystallization Control and Defect Passivation Enabled by an Ionic Compensation Strategy for Stable and High- Efficient Perovskite Solar Cells	2020	SnO2	no	МАРЫЗ	one-step	spin	ethyl acetate	DMF+DMSO	Spiro-OMeTAD	Li+TBP	17.75
1000 h Operational Lifetime Perovskite Solar Cells by Ambient Melting Encapsulation	2020	SnO2	no	Rb0.09Cs0.0 6[(FA0.85M A0.15)Pb(Br 0.15l0.85)3]	one-step	spin	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	20.5
A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability	2020	SnO2- EDTAK	no	Cs0.05FA0.5 4MA0.41Pb(I 0.98Br0.02)3 -EAMA	two-step	spin	no	DMF+DMSO +IPA	Spiro- OMeTAD/P3HT	Li+TBP	16.1
A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability	2020	SnO2- EDTAK	no	Cs0.05FA0.5 4MA0.41Pb(I 0.98Br0.02)3 -EAMA	two-step	spin	no	DMF+DMSO +IPA	Spiro-OMeTAD	Li+TBP	16.6
A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability	2020	SnO2- EDTAK	no	Cs0.05FA0.5 4MA0.41Pb(I 0.98Br0.02)3	two-step	spin	no	DMF+DMSO +IPA	Spiro-OMeTAD	Li+TBP	13.7
A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability	2020	SnO2	no	Cs0.05FA0.5 4MA0.41Pb(I 0.98Br0.02)3	two-step	spin	no	DMF+DMSO +IPA	Spiro-OMeTAD	Li+TBP	11.4
Intermolecular π–π Conjugation Self- Assembly to Stabilize Surface Passivation of Highly Efficient Perovskite Solar Cells	2020	TiO2	PCBA	PbI2,MABr,F AI,MACI,CsI	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	20.8
Intermolecular π - π Conjugation Self- Assembly to Stabilize Surface Passivation of	2020	TiO2	PCBA	TPPO/PbI2, MABr,FAI,M	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	21.4

Highly Efficient Perovskite Solar Cells				ACI,CsI							
Intermolecular π - π Conjugation Self-				TBPO/Pbl2,							
Assembly to Stabilize Surface Passivation of	2020	TiO2	РСВА	MABr,FAI,M	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	22.1
Highly Efficient Perovskite Solar Cells				ACI,CsI							
Efficient perovskite solar cells via improved	2020	5-02	20	Pbl2,FAI,MA	ana atan	onin 0.2	diathyl athar		Spire OMeTAD	Li+TBP+FK	25.2
carrier management	2020	31102	no	CI,MAPbBr3	one-step	spin 2-3	dieuryr eurer	DIVIFTDIVISO	Spilo-OmeTAD	209	23.2
Dopant-Free, Donor–Acceptor-Type Polymeric											
Hole-Transporting Materials for the Perovskite	2020	SpO2	20		ono ston	onin 2.2	chlorobonzono			Li+TBP+FK	20.29
Solar Cells with Power Conversion	2020	31102	no	DIZ,IVIADI,CS	one-step	spin 2-3	chiorobenzene	DIVIFTDIVISO	PBUTT	209	20.20
Efficiencies over 20%				·							
Dopant-Free, Donor–Acceptor-Type Polymeric				Pbl2.FAI.Pb							
Hole-Transporting Materials for the Perovskite	2020	SnO2	no	Br2.MABr.Cs	one-step	spin 2-3	chlorobenzene	DMF+DMSO	PBTTT	Li+TBP+FK	19.48
Solar Cells with Power Conversion										209	
Efficiencies over 20%											
Dopant-Free, Donor–Acceptor-Type Polymeric				Phi2 FAI Ph							
Hole-Transporting Materials for the Perovskite	2020	SnO2	no	Br2 MABr Cs	one-sten	snin 2-3	chlorobenzene		Spiro-OMeTAD	Li+TBP+FK	18 32
Solar Cells with Power Conversion	2020	01102	no		one-step	3pin 2-0	Gilloroberizerie	Divil 1 Divide	opilo-ometrad	209	10.02
Efficiencies over 20%				1							
Dopant-Free, Donor-Acceptor-Type Polymeric				Phi2 FAI Ph							
Hole-Transporting Materials for the Perovskite	2020	SnO2	no	Br2 MABr Ce	one sten	spin 2-3	chlorobenzene		рзит	Li+TBP+FK	13.08
Solar Cells with Power Conversion	2020	01102	no		one-step	3pin 2-0	Gilloroberizerie	Divil 1 Divide	1 0111	209	10.00
Efficiencies over 20%				•							
Lewis-Base Containing spiro Type Hole				Pbl2,FAI,Pb							
Transporting Materials for High-Performance	2020	SnO2	no	Br2,MABr,Cs	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-CN	Li+TBP	19.9
Perovskite Solar Cells with Efficiency				I							

Approaching 20%											
Lewis-Base Containing spiro Type Hole Transporting Materials for High-Performance Perovskite Solar Cells with Efficiency Approaching 20%	2020	SnO2	no	Pbl2,FAl,Pb Br2,MABr,Cs I	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-PS	Li+TBP	18.08
Lewis-Base Containing spiro Type Hole Transporting Materials for High-Performance Perovskite Solar Cells with Efficiency Approaching 20%	2020	SnO2	no	Pbl2,FAI,Pb Br2,MABr,Cs I	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	19.85
p-Doping of a hole transport material via a poly(ionic-liquid) for over 20% efficiency and hysteresis-free perovskite solar cells	2020	TiO2	mTiO2	K0.05(MA0.1 5FA0.85)0.9 5Pbl2.55Br0. 45	one-step	spin	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	PVBI-TFSI	20.33
p-Doping of a hole transport material via a poly(ionic-liquid) for over 20% efficiency and hysteresis-free perovskite solar cells	2020	TiO2	mTiO2	K0.05(MA0.1 5FA0.85)0.9 5Pbl2.55Br0. 45	one-step	spin	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	17.71
RbCs(MAFA)Pbl3 perovskite solar cell with 22.81% efficiency using the precise ions cascade regulation	2020	NiOx	no	Rb0.2Cs0.2(MA0.3FA0.3)Pbl3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	РСВМ	no	22.81
RbCs(MAFA)Pbl3 perovskite solar cell with 22.81% efficiency using the precise ions cascade regulation	2020	NiOx	no	(MA0.5FA0. 5)Pbl3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	РСВМ	no	17.15
RbCs(MAFA)PbI3 perovskite solar cell with 22.81% efficiency using the precise ions cascade regulation	2020	NiOx	no	Rb0.05Cs0.0 5(MA0.45FA 0.45)Pbl3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	РСВМ	no	19.16

RbCs(MAFA)PbI3 perovskite solar cell with				Rb0.1Cs0.1(
22.81% efficiency using the precise ions	2020	NiOx	no	MA0.4FA0.4	one-step	spin 2-3	chlorobenzene	DMF+DMSO	PCBM	no	20.6
cascade regulation)PbI3							
RbCs(MAFA)PbI3 perovskite solar cell with				Rb0.15Cs0.1							
22.81% efficiency using the precise ions	2020	NiOx	no	5(MA0.35FA	one-step	spin 2-3	chlorobenzene	DMF+DMSO	PCBM	no	21.67
cascade regulation				0.35)Pbl3							
RbCs(MAFA)PbI3 perovskite solar cell with				Rb0.25Cs0.2							
22.81% efficiency using the precise ions	2020	NiOx	no	5(MA0.25FA	one-step	spin 2-3	chlorobenzene	DMF+DMSO	PCBM	no	21.05
cascade regulation				0.25)Pbl3							
Efficient and stable Ruddlesden–Popper											
perovskite solar cell with tailored interlayer	2020	PCBM	no)4Pb5I16	one-step	spin	no	MAAc	PEDOT:PSS	no	18.06
molecular interaction)41 00110							
Stable perovskite solar cells with efficiency		TION		FADILIO			d'a dia dia dia m			Li+TBP+FK	00.44
exceeding 24.8% and 0.3-V voltage loss	2020	1102	m1102	FAPDI3	one-step	spin	dietnyi etner	DMF+DMSO	Spiro-Ome I AD	209	23.44
Stable perovskite solar cells with efficiency										Li+TBP+FK	
exceeding 24.8% and 0.3-V voltage loss	2020	TiO2	mTiO2	FAPbl3	one-step	spin	diethyl ether	DMF+DMSO	Spiro-mF	209	24.82
Stable perovskite solar cells with efficiency										Li+TBP+FK	
exceeding 24.8% and 0.3-V voltage loss	2020	TiO2	mTiO2	FAPbl3	one-step	spin	diethyl ether	DMF+DMSO	Spiro-oF	209	23.56
Controlled n-Doping in Air-Stable CsPbl2Br											
Perovskite Solar Cells with a Record	2020	TiO2	no	Ca/CsPbl2Br	one-step	spin 2-3	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP	16.79
Efficiency of 16.79%											
Controlled n-Doping in Air-Stable CsPbl2Br											
Perovskite Solar Cells with a Record	2020	TiO2	no	CsPbl2Br	one-step	spin 2-3	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP	14.89
Efficiency of 16.79%											
Tailored Amphiphilic Molecular Mitigators for				Cs0.05FA0.8							
Stable Perovskite Solar Cells with 23.5%	2020	TiO2	mTiO2	5MA0.10Pb(I	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	23.5

Efficiency				0.97Br0.03)3							
				/tBBAI							
Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency	2020	TiO2	mTiO2	Cs0.05FA0.8 5MA0.10Pb(I 0.97Br0.03)3 /PEAI	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	22.7
Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency	2020	TiO2	mTiO2	Cs0.05FA0.8 5MA0.10Pb(I 0.97Br0.03)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	20.1
Stable and High-Efficiency Methylammonium- Free Perovskite Solar Cells	2020	TiO2	mTiO2- SnO2	(Cs0.17FA0. 83)Pb(I0.89 Br0.08CI0.03)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	20.5
Stable and High-Efficiency Methylammonium- Free Perovskite Solar Cells	2020	TiO2	mTiO2- SnO2	(Cs0.08FA0. 8MA0.12)Pb (I0.88Br0.12) 3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	19
Gradient Energy Alignment Engineering for Planar Perovskite Solar Cells with Efficiency Over 23%	2020	In2O3	SnO2	PbI2,FAI,MA I,MACI	two-step	spin	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP	23.24
Gradient Energy Alignment Engineering for Planar Perovskite Solar Cells with Efficiency Over 23%	2020	SnO2	0	PbI2,FAI,MA I,MACI	two-step	spin	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP	21.42
Gradient Energy Alignment Engineering for Planar Perovskite Solar Cells with Efficiency Over 23%	2020	In2O3	0	PbI2,FAI,MA I,MACI	two-step	spin	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP	19.21

Precursor Engineering for Ambient- Compatible Antisolvent-Free Fabrication of High-Efficiency CsPbl2Br Perovskite Solar Cells	2020	TiO2	no	CsPbl2Br	one-step	spin 2-3	no	DMSO	ΡΤΑΑ	TPFPB	16.14
High-Performance CsPbIxBr3-x All-Inorganic Perovskite Solar Cells with Efficiency over 18% via Spontaneous Interfacial Manipulation	2020	SnO2	no	GABr/CsPbl xBr3-x	one-step	spin	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	18.06
High-Performance CsPbIxBr3-x All-Inorganic Perovskite Solar Cells with Efficiency over 18% via Spontaneous Interfacial Manipulation	2020	SnO2	no	CsPblxBr3-x	one-step	spin	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	13.64
Boosting Multiple Interfaces by Co-Doped Graphene Quantum Dots for High Efficiency and Durability Perovskite Solar Cells	2020	α-Fe2O3	NSGQDS	MAPbI3/NS GQDS	one-step	spin	chlorobenzene	DMF	Spiro-OMeTAD	Li+TBP	19.2
Double-Sided Surface Passivation of 3D Perovskite Film for High-Efficiency Mixed- Dimensional Perovskite Solar Cells	2020	TiO2	mTiO2- PMMA/PC BM	n-BAI- Cs0.07Rb0.0 3FA0.765MA 0.135PbI2.5 5Br0.45-n- BAI	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	22.77
Highly stable and Efficient Perovskite Solar Cells Based on FAMA-Perovskite-Cu:NiO Composites with 20.7% Efficiency and 80.5% Fill Factor	2020	TiO2	mAl2O3- Cu:NiO	FA0.026MA0 .974PbI3-yC ly-Cu:NiO	one-step	spin	no	no	Spiro-OMeTAD	Li+TBP	20.67
Highly stable and Efficient Perovskite Solar Cells Based on FAMA-Perovskite-Cu:NiO Composites with 20.7% Efficiency and 80.5% Fill Factor	2020	TiO2	mAl2O3- Cu:NiO	МАРЫЗ-уСІ У	one-step	spin	no	no	Spiro-OMeTAD	Li+TBP	16.2

Highly stable and Efficient Perovskite Solar Cells Based on FAMA-Perovskite-Cu:NiO Composites with 20.7% Efficiency and 80.5% Fill Factor	2020	TiO2	mAl2O3- Cu:NiO	MAPbI3-yCl y-Cu:NiO	one-step	spin	no	no	Spiro-OMeTAD	Li+TBP	17.7
Nonaromatic Green-Solvent-Processable, Dopant-Free,and Lead-Capturable Hole T ransport Polymers in Perovskite Solar Cells with High Efficiency	2020	SnO2	no	Cs0.06FA0.7 8MA0.16Pb0 .94I2.4Br0.4 8	one-step	spin	chlorobenzene	DMF+DMSO	alkoxy-PTEG	no	21.2
Synergistic Cascade Carrier Extraction via Dual Interfacial Positioning of Ambipolar Black Phosphorene for High-Efficiency Perovskite Solar Cells	2020	TiO2	mTiO2-BP	Cs0.05MA0. 16FA0.79Pb (I0.83Br0.17) 3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	19.83
Synergistic Cascade Carrier Extraction via Dual Interfacial Positioning of Ambipolar Black Phosphorene for High-Efficiency Perovskite Solar Cells	2020	TiO2	mTiO2	Cs0.05MA0. 16FA0.79Pb (I0.83Br0.17) 3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	16.95
High-Efficiency CsPbl2Br Perovskite Solar Cells with Dopant-Free Poly(3- hexylthiophene) Hole Transporting Layers	2020	SnO2	no	CsPbl2Br	one-step	spin	no	DMSO	РЗНТ	no	15.5
Graphdiyne:Bridging SnO2and Perovskite in Planar Solar Cells	2020	GDY–SnO2	no	CsMAFAPbl Br	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	21.11
Graphdiyne:Bridging SnO2and Perovskite in Planar Solar Cells	2020	SnO2	no	CsMAFAPbl Br	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	19.17
Red-Carbon-Quantum-Dot-Doped SnO2 Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells	2020	SnO2-RCQs	no	Cs0.05FA0.8 1MA0.14Pbl 2.55Br0.45	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	no	22.77

Red-Carbon-Quantum-Dot-Doped SnO2				Cs0.05FA0.8							
Composite with Enhanced Electron Mobility	2020	SnO2	no	1MA0.14Pbl	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	no	19.15
for Efficient and Stable Perovskite Solar Cells				2.55Br0.45							
Simultaneous Contact and Grain-Boundary											
Passivation in Planar Perovskite Solar Cells	2020	Sp02 KCl	20		two stop	onin	20		Spire OMeTAD		22.2
Using SnO2-KCI Composite Electron T	2020	51102-KCI	no	MAFAPDIDI	two-step	spin	no	DIVIF+DIVISO	Spiro-OwerAD	LITIDP	22.2
ransport Layer											
Simultaneous Contact and Grain-Boundary											
Passivation in Planar Perovskite Solar Cells	2020	5202	20		two stop	onin	20		Spire OMeTAD		20.2
Using SnO2-KCI Composite Electron T	2020	31102	no	MAFAPDIDI	two-step	spin	no	DIVIF+DIVISO	Spiro-OwerAD	LITIDP	20.2
ransport Layer											
				[(FAPbI3)0.8							
Dynamical Evolution of the 2D/3D Interface: A				7(MAPbBr3)							
Hidden Driver behind Perovskite Solar Cell	2020	TiO2	mTiO2	0.13]0.92(Cs	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD		19.97
Instability				Pbl3)0.08-2-						209	
				TMAI							
				[(FAPbl3)0.8							
Dynamical Evolution of the 2D/3D Interface: A				7(MAPbBr3)							
Hidden Driver behind Perovskite Solar Cell	2020	TiO2	mTiO2	0.13]0.92(Cs	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD		20.59
Instability				Pbl3)0.08-3-						209	
				TMAI							
				[(FAPbl3)0.8							
Dynamical Evolution of the 2D/3D Interface: A				7(MAPbBr3)							
Hidden Driver behind Perovskite Solar Cell	2020	TiO2	mTiO2	0.13]0.92(Cs	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD		19.42
Instability				Pbl3)0.08-2-						209	
				TEAI							

Highly Efficient Perovskite Solar Cells Enabled by Multiple Ligand Passivation	2020	SnO2	no	PbI2,FAI,MA Br,MACI/ML	two-step	spin	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP	20.9
Highly Efficient Perovskite Solar Cells Enabled by Multiple Ligand Passivation	2020	SnO2	no	Pbi2,FAI,MA Br,MACI	two-step	spin	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP	18.4
Optimization of CH3NH3Pbl3perovskite solar cells: A theoretical and experimental study	2020	TiO2	mTiO2	MAPbl3	two-step	spin	no	DMF	Spiro-OMeTAD	Li+TBP	20.26
In-situ fabrication of P3HT passivating layer with hole extraction ability for enhanced performance of perovskite solar cell	2020	SnO2	no	Cs0.05(MA0. 17FA0.83)0. 95Pb(I0.83B r0.17)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	20
Structural Modification of Triphenylamine Derivatives vs the Minimization of Carrier Losses for Efficient Perovskite Solar Cells	2020	TiO2	mTiO2- SnO2	Cs0.1(MA0.1 5FA0.85)Pb(l0.85Br)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	CS02	Li+TBP+FK 209	15.4
Structural Modification of Triphenylamine Derivatives vs the Minimization of Carrier Losses for Efficient Perovskite Solar Cells	2020	TiO2	mTiO2- SnO2	Cs0.1(MA0.1 5FA0.85)Pb(10.85Br)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	CS05	Li+TBP+FK 209	18.05
Structural Modification of Triphenylamine Derivatives vs the Minimization of Carrier Losses for Efficient Perovskite Solar Cells	2020	TiO2	mTiO2- SnO2	Cs0.1(MA0.1 5FA0.85)Pb(10.85Br)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	CS04	Li+TBP+FK 209	19.38
Simultaneous Power Conversion Efficiency and Stability Enhancement of Cs2AgBiBr6 Lead-Free Inorganic Perovskite Solar Cell through Adopting a Multifunctional Dye Interlayer	2020	TiO2	mTiO2	Cs2AgBiBr6, N719	one-step	spin	no	DMSO	Spiro-OMeTAD	Li+TBP	2.84

RbCs(MAFA)Pbl3perovskite solar cell with				RbxCsx(MA(
22.81% efficiency using the	2020	NiOx	no	1-2x)/2FA(1-	one-step	spin 2-3	chlorobenzene	DMF+DMSO	PCBM	no	22.81
precise ions cascade regulation				2x)/2)							
Record-Efficiency Flexible Perovskite Solar Cell and Module Enabled by a Porous-Planar Structure as an Electron Transport Laver	2020	SnO2	porous- ZSO	(FAPbl3)0.9 5(MAPbBr3) 0.05	one-step	spin 2-3	diethyl ether	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	20.7
Optimization of CH3NH3Pbl3perovskite solar											
cells: A theoretical and experimental study	2020	TiO2	mTiO2	MAPbI3	two-step	spin	no	DMF	Spiro-OMeTAD	Li+TBP	20.26
Self-augmented ion blocking of sandwiched 2D/1D/2D electrode for solution processed high efficiency semitransparent perovskite solar cell	2020	SnO2	no	KxCs0.05(F A0.85MA0.1 5)0.95Pb(I0. 85Br0.15)3	one-step	spin	ethyl acetate	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	14.69
Highly efficient, stable and hysteresis–less planar perovskite solar cell based on chemical bath treated Zn2SnO4 electron transport layer	2020	ZSO	no	Cs0.05(MA0. 15FA0.85)0. 95Pb(Br0.15 10.85)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	21.3
Water Assisted Formation of Highly Oriented CsPbl2Br Perovskite Films with Solar Cell Efficiency Exceeding 16%	2020	TiO2	no	CsPbl2Br	one-step	spin 2-3	IPA	DMSO	РЗНТ	Li+TBP	16.47
Precise Stress Control of Inorganic Perovskite Films for Carbon-Based Solar Cells with an Ultrahigh Voltage of 1.622 V	2020	SnO2	no	CsPbBr3	two-step	spin	no	DMF	no	no	10.71

Stabilization of Highly Efficient and Stable											
Phase-Pure FAPbI3	2020	TiOD									00.7
Perovskite Solar Cells by Molecularly Tailored	2020	1102	miloz	FAPDI3/IBAI	one-step	spin 2-3	chlorobenzene	DMF+DMS0	Spiro-Olivie I AD	LI+TBP	22.1
2D-Overlayers											
Efficient all-inorganic CsPbl2Br perovskite											
solar cell with carbon electrode	2020	6-02		C-D-IOD-							10.10
by revealing crystallization kinetics and	2020	SnO2	no	CSPDIZBr	one-step	spin	etnyi acetate	DMF+DMSO	no	no	12.19
improving crystal quality											
Air-Stable Hybrid Perovskite Solar Cell by											
Sequential Vapor	2020	TiO2	no	MAPbl3	two-step	CVD	no	no	Spiro-OMeTAD	Li+TBP	14.15
Deposition in a Single Reactor											
Thin Film (< 200 nm) Perovskite Solar Cell											
with 18% Efficiency	2020	SnO2	no	s-EAPbl3	one-step	spin	no	DMF	Spiro-OMeTAD	Li+TBP	18.1
Bifunctional Effects of Trichloro(octyl)silane											
Modification on the				Pbl2,PbBr2,							
Performance and Stability of a Perovskite	2020	SnO2	no	MABr,FAI,Cs	two-step	spin	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP	20.03
Solar Cell via Microscopic				I							
Characterization Techniques											
Dopant-free methoxy substituted copper(II)				(FAPbl3)0.8							
phthalocyanine for highly	2020	SnO2	no	5(MAPbBr3)	one-step	spin 2-3	chlorobenzene	DMF+DMSO	CuPc-(OMe)8	Li+TBP	18.3
efficient and stable perovskite solar cells				0.15							
Interface Engineering of Air-Stable n-Doping											
FullereneModified TiO2 Electron Transport		T 00	50514								00.44
Layer for Highly	2020	HU2	PCBM	MAPDI3	one-step	spin 2-3	chioropenzene		Spiro-Ome i AD	no	20.14
Efficient and Stable Perovskite Solar Cells											

Planar MgxZn1-xO-based perovskite solar cell				(CsxFA1-							
with superior ultraviolet	2020	MZO	no	xSnl3)0.5(M	one-step	spin 2-3	chlorobenzene	DMF+DMSO	PTAA	no	19.57
light stability				APbl3)0.5							
Stable and High-Efficiency Methylammonium-				(Cs0.17FA0.							
Free	2020	TiO2	mTiO2-	83)	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK	20.5
Perovskite Solar Cells			SnO2	Pb(I0.97Cl0.						209	
				03)3							
Unraveling Doping Capability of Conjugated											
Polymers				(FAPbl3)0.9							
for Strategic Manipulation of Electric Dipole	2020	TiO2	mTiO2	5(MAPbBr3)	one-step	spin 2-3	ethyl ether	DMF+DMSO	PDIF-BT	no	20.21
Layer toward				0.05							
Efficient Charge Collection in Perovskite Solar											
Cells											
Cu2ZnSnS4 as an efficient hole transporting											
material for low temperature	2020	TiO2	mTiO2	MAPbl3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Cu2ZnSnS4	no	12.53
paintable carbon electrode based perovskite						·					
solar cells											
Air-processed carbon-based perovskite solar				EA0 83MA0							
cells with enhanced	2020	TiO2	mTiO2	17Pbl2\$49Br	one-step	spin 2-3	chlorobenzene	DMF+DMSO	CuSCN	no	14.87
efficiency and stability: Effect of temperature	2020			0.51	0.00 0.00	op <u>2</u> o		2111 21100			
control and using CuSCN				0.01							
High-performance hole conductor-free											
perovskite	2020	7n0	DEI	MADI2	ono ston	coin	othyl othor		MW/CNITe	20	15 56
solar cell using a carbon nanotube counter	2020	2110	FEI	INIAF 13	one-step	spin	euryreuler	DIVIF+DIVISO	WWCNTS	110	15.50
electrode											
Indium doped CsPbI3 films for inorganic	0055	TICL									
perovskite solar cells with efficiency exceeding	2020	HO2	no	INI3:CSPbI3	one-step	spin	no	DMF	Spiro-OMe I AD	LI+IRA	17.09

17%											
Critical Assessment of the Use of Excess Lead lodide in Lead Halide Perovskite Solar Cells	2020	TiO2	mTiO2	MAPbI3	one-step	spin	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP	19.3
A perovskite solar cell owing very high stabilities and power conversion efficiencies	2020	bathophenan throline	no	CsPbl3- [CsPbl3]0.04 [(MAPbBr3)0 .15(FAPbl3) 0.85]0.96- CsPbl3	two-step	spin	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	21.32
Universal defects elimination for high performance thermally evaporated CsPbBr3 perovskite solar cells	2020	TiO2	no	CsPbBr3	two-step	evaporat ion-spin	no	no	no	no	9.35
Tetrahydrofuran as Solvent for P3HT:F4- TCNQ Hole-Transporting Layer to Increase the Efficiency and Stability of FAPbl3-based Perovskite Solar Cell	2020	SnO2	no	(FAPbl3)0.8 75(CsPbBr3) 0.125	one-step	spin	diethyl ether	DMF+DMSO	P3HT:F4-TCNQ	no	13.54
An Efficient and Stable Perovskite Solar Cell with Suppressed Defects by Employing Dithizone as a Lead Indicator	2020	SnO2	no	(Cs0.05FA0. 54MA0.41)P b(I0.98Br0.0 2)3	two-step	spin	no	DMF+DMSO +IPA	Spiro-OMeTAD	Li+TBP	20.36
Improving the open-circuit voltage of Sn- based perovskite solar cells by band alignment at the electron transport layer/perovskite layer interface	2020	SnO2	no	(MA,FA)Pb(I, Br)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	ΡΤΑΑ	Li+TBP	18

Improving the open-circuit voltage of Sn- based perovskite solar cells by band alignment at the electron transport layer/perovskite layer interface	2020	TiO2	no	(MA,FA)Pb(I, Br)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	ΡΤΑΑ	Li+TBP	16.9
Improving the open-circuit voltage of Sn- based perovskite solar cells by band alignment at the electron transport layer/perovskite layer interface	2020	Nb2O5	no	(MA,FA)Pb(I, Br)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	ΡΤΑΑ	Li+TBP	15.1
High-performance HTL-free perovskite solar cell: An efficient composition of ZnO NRs, RGO, and CuInS2QDs, as electron-transporting layer matrix	2020	ZnO- RGO5%- CulnS220%	no	MAPb13	two-step	spin	no	DMF+IPA	no	no	15.74
Greatly enhanced power conversion efficiency of hole-transport-layer-free perovskite solar cell via coherent interfaces of perovskite and carbon layers	2020	TiO2	no	MAPb13	one-step	spin	no	DMF	no	no	14.1
Implicit Tandem Organic–Inorganic Hybrid Perovskite Solar Cells Based on Internal Dye Sensitization: Robotized Screening, Synthesis, Device Implementation, and	2020	TiO2	no	CsPbl3-Mn	one-step	spin	no	DMF+DMSO	ΡΤΑΑ	Li+TBP	16.52
Highly electroluminescent and stable inorganic CsPbl2Br perovskite solar cell enabled by balanced charge transfer	2020	SnO2:C60- EDA	no	CsPbl2Br-5- AVABr	one-step	spin 2-3	ethyl acetate	DMSO+IPA	Spiro-OMeTAD	Li+TBP	16.58
Highly electroluminescent and stable inorganic CsPbl2Br perovskite solar	2020	SnO2:C70- EDA	no	CsPbl2Br-5- AVABr	one-step	spin 2-3	ethyl acetate	DMSO+IPA	Spiro-OMeTAD	Li+TBP	15.66
cell enabled by balanced charge transfer											
--	------	-------------------	-------	--	----------	----------	---------------	----------	--------------	------------------	-------
Investigating the effects of carbon-based counter electrode layers on the efficiency of hole-transporter-free perovskite solar cells	2020	TiO2	mTiO2	MAPb13	one-step	spin	no	DMF	no	no	4.25
Hysteresis-less and stable perovskite solar cells with a self-assembled monolayer	2020	SnO2-CPTA- SAM	no	CsFAMA	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	17.7
Benzodithiophene-Thienopyrroledione- Thienothiophene-based Random Co- polymeric Hole Transporting Material for Perovskite Solar Cell	2020	TiO2-Cl	mTiO2	Cs0.05((MA 0.15FA0.85)(0.95)Pb(10.8 5Br0.15)3,	one-step	spin 2-3	chlorobenzene	DMF+DMSO	RCP-BTT	Li+TBP	14.57
Benzodithiophene-Thienopyrroledione- Thienothiophene-based Random Co- polymeric Hole Transporting Material for Perovskite Solar Cell	2020	TiO2-Cl	mTiO2	Cs0.05((MA 0.15FA0.85)(0.95)Pb(I0.8 5Br0.15)3,	one-step	spin 2-3	chlorobenzene	DMF+DMSO	PTB7	Li+TBP	12.02
Benzodithiophene-Thienopyrroledione- Thienothiophene-based Random Co- polymeric Hole Transporting Material for Perovskite Solar Cell	2020	TiO2-Cl	mTiO2	Cs0.05((MA 0.15FA0.85)(0.95)Pb(I0.8 5Br0.15)3,	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	19.17
Critical role of interface contact modulation in realizing low-temperature fabrication of efficient and stable CsPbIBr2perovskite solar cells	2020	SnO2	no	CsPbIBr2	one-step	spin 2-3	no	DMSO	Spiro-OMeTAD	Li+TBP+FK 209	10.81

Critical role of interface contact modulation in realizing low-temperature fabrication of efficient and stable CsPbIBr2perovskite solar cells	2020	ZnO	no	CsPbIBr2	one-step	spin 2-3	no	DMSO	Spiro-OMeTAD	Li+TBP+FK 209	9.7
Dual Effective Dopant Based Hole Transport Layer for Stable and Efficient Perovskite Solar Cells	2020	TiO2	mTiO2	Pbl2,FAI,MA Br,PbBr2	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+PFPPY	21.38
Dual Effective Dopant Based Hole Transport Layer for Stable and Efficient Perovskite Solar Cells	2020	TiO2	mTiO2	Pbl2,FAI,MA Br,PbBr2	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	19.69
Vacuum-Assisted Growth of Low-Bandgap Thin Films (FA0.8MA0.2Sn0.5Pb0.5I3) for All-Perovskite T andem Solar Cells	2020	SnO2	no	(FA0.8MA0. 2Sn0.5Pb0.5 I3)	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	23
Improve the Oxide/Perovskite Heterojunction Contact for Low Temperature High Efficiency and Stable All-inorganic CsPbl2Br Perovskite Solar Cells	2020	ZnO	no	CsPbl2Br	one-step	spin	no	DMSO	Spiro-OMeTAD	Li+TBP+FK 209	14.78
Improve the Oxide/Perovskite Heterojunction Contact for Low Temperature High Efficiency and Stable All-inorganic CsPbl2Br Perovskite Solar Cells	2020	SnO2	no	CsPbl2Br	one-step	spin	no	DMSO	Spiro-OMeTAD	Li+TBP+FK 209	12.3
Alkyl Chain Regulated Charge Transfer in Fluorescent Inorganic CsPbBr3 Perovskite Solar Cells	2020	TiO2	mTiO2	CsPbBr3	two-step	spin	no	DMF	CulnS2/ZnS	no	10.85

Effective carbon composite electrode for low- cost perovskite solar cell with inorganic Culn0.75Ga0.25S2 HTM	2020	TiO2	no	Cs0.05(MA0. 17FA0.83)0. 95Pb(I0.83B r0.17)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Culn0.75Ga0.2 5S2	no	16.3
Effect of the hole transporting / active layer interface on the perovskite solar cell stability	2020	SnO2	no	MAPbl3-xClx	one-step	spin	no	DMF	ΡΤΑΑ	no	12.6
Effect of the hole transporting / active layer interface on the perovskite solar cell stability	2020	SnO2	no	MAPbI3-xClx	one-step	spin	no	DMF	РЗНТ	no	11.2
Moisture-Resistant FAPbI3 Perovskite Solar Cell with 22.25% Power Conversion Efficiency through Pentafluorobenzyl Phosphonic Acid Passivation	2020	TiO2	mTiO2	FAPbI3/PFB PA	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	22.25
Moisture-Resistant FAPbI3 Perovskite Solar Cell with 22.25% Power Conversion Efficiency through Pentafluorobenzyl Phosphonic Acid Passivation	2020	TiO2	mTiO2	FAPbi3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	20.19
Chlorine-modified SnO2electron transport layer for high-efficiency perovskite solar cells	2020	SnO2-Cl	no	FAI,PbI2,CsI ,MABr,PbBr2	one-step	spin	anisole	DMF+DMSO	Spiro-OMeTAD	Li+TBP	17.01
Chlorine-modified SnO2electron transport layer for high-efficiency perovskite solar cells	2020	SnO2	no	FAI,PbI2,CsI ,MABr,PbBr2	one-step	spin	anisole	DMF+DMSO	Spiro-OMeTAD	Li+TBP	17.81
Combustion Procedure Deposited SnO2 Electron Transport Layers for High Efficient	2020	s-SnO2	no	Cs 0.05 (MA 0.17 FA 0.83	one-step	spin 2-3	chlorobenzene	DMF+DMSO	РСВМ	no	15.29

Perovskite Solar Cells)0.95 Pb(l							
				0.83 Br 0.17							
)3							
				Cs 0.05 (MA							
Combustion Procedure Deposited SnO2				0.17 FA 0.83							
Electron Transport Layers for High Efficient	2020	c-SnO2	no)0.95 Pb(I	one-step	spin 2-3	chlorobenzene	DMF+DMSO	PCBM	no	19.12
Perovskite Solar Cells				0.83 Br 0.17							
)3							
				Cs 0.05 (MA							
Combustion Procedure Deposited SnO2				0.17 FA 0.83							
Electron Transport Layers for High Efficient	2020	Nd-SnO2	no)0.95 Pb(I	one-step	spin 2-3	chlorobenzene	DMF+DMSO	PCBM	no	20.92
Perovskite Solar Cells				0.83 Br 0.17							
)3							
Introduction of Multifunctional Triphenylamino											
Derivatives at the Perovskite/	2020	Sp02 Cl	20	EADDI2	two stop	opin	20		Spire OMeTAD		16.60
HTL Interface to Promote Efficiency and	2020	31102-01	no	FAFDIS	two-step	spin	10	DIVIFTDIVISO	Spilo-OwerAD	LITIDE	10.09
Stability of Perovskite Solar Cells											
Introduction of Multifunctional Triphenylamino											
Derivatives at the Perovskite/	2020	Sp02 Cl	20	EADDI2	two stop	opin	20		Spire OMeTAD	Li+TBP+TP	17.4
HTL Interface to Promote Efficiency and	2020	31102-01	no	FAFDIS	two-step	spin	10	DIVIFTDIVISO	Spilo-OwerAD	A-EABr	17.4
Stability of Perovskite Solar Cells											
Introduction of Multifunctional Triphenylamino											
Derivatives at the Perovskite/	2020	S=02 CI	20		two stop	opin	20		Spire OMeTAD	Li+TBP+TP	10.15
HTL Interface to Promote Efficiency and	2020	31102-01	no	FAPDIS	two-step	spin	no	DIVIF+DIVISO	Spiro-OwerAD	A-PEABr	10.15
Stability of Perovskite Solar Cells											
A highly stable hole-conductor-free CsxMA1-		Tion	mTiO2-	CsxMA1-							10.57
xPbl3perovskite solar cell	2020	HO2	mZrO2	xPbl3	one-step	spin 2-3	no	DWF+DMSO	no	no	10.57

based on carbon counter electrode											
Performance of low-cost mixed cationic carbon-based solar cells prepared through compositional engineering under ambient conditions	2020	TiO2	mTiO2- mZrO2	FA0.55MA0. 25Cs0.2Pbl3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	no	no	9.56
Performance of low-cost mixed cationic carbon-based solar cells prepared through compositional engineering under ambient conditions	2020	TiO2	mTiO2- mZrO2	FA0.55MA0. 25Cs0.2PbI3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	РЗНТ	no	8.56
Performance of low-cost mixed cationic carbon-based solar cells prepared through compositional engineering under ambient conditions	2020	TiO2	mTiO2- mZrO2	FA0.55MA0. 25Cs0.2PbI3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	no	13.41
Solvent selection for highly reproducible carbon-based mixed-cation hybrid lead halide perovskite solar cells via adduct approach	2020	TiO2	mTiO2- mZrO2	Cs0.1FA0.9 Pbl3	one-step	drip	no	DMSO	no	no	12.33
Solvent selection for highly reproducible carbon-based mixed-cation hybrid lead halide perovskite solar cells via adduct approach	2020	TiO2	mTiO2- mZrO2	Cs0.1FA0.9 Pbl3	one-step	drip	no	DMF+DMSO	no	no	10.06
Solvent selection for highly reproducible carbon-based mixed-cation hybrid lead halide perovskite solar cells via adduct approach	2020	TiO2	mTiO2- mZrO2	Cs0.1FA0.9 Pbl3	one-step	drip	no	DMF	no	no	8.07

Solvent selection for highly reproducible carbon-based mixed-cation hybrid lead halide perovskite solar cells via adduct approach	2020	TiO2	mTiO2- mZrO2	Cs0.1FA0.9 Pbl3	one-step	drip	no	DMSO+GBL	no	no	4.62
Paradoxical Approach with a Hydrophilic Passivation Layer for Moisture-Stable, 23% Efficient Perovskite Solar Cells	2020	SnO2	no	FAPb13	one-step	spin	diethyl ether	DMF+NMP	Spiro-OMeTAD	Li+TBP	21.54
Paradoxical Approach with a Hydrophilic Passivation Layer for Moisture-Stable, 23% Efficient Perovskite Solar Cells	2020	SnO2	no	FAPbI3+4AB I	one-step	spin	diethyl ether	DMF+NMP	Spiro-OMeTAD	Li+TBP	23.25
Paradoxical Approach with a Hydrophilic Passivation Layer for Moisture-Stable, 23% Efficient Perovskite Solar Cells	2020	SnO2	no	FAPbI3+2AE I	one-step	spin	diethyl ether	DMF+NMP	Spiro-OMeTAD	Li+TBP	22.75
Multifunctional Enhancement for Highly Stable and Efficient Perovskite Solar Cells	2020	TiO2	no	FA0.85MA0. 15Pbl3	one-step	spin 2-3	chlorobenzene	DMF+NMP	Spiro-OMeTAD	Li+TBP	22.21
Thiocyanate assisted nucleation for high performance mix-cation perovskite solar cells with improved stability	2020	Bi-SnO2	no	FA0.4MA0.6 PbI2.8- xBr0.2(SCN) x	one-step	spin	no	DMF	Spiro-OMeTAD	Li+TBP+FK 209	19.64
Thiocyanate assisted nucleation for high performance mix-cation perovskite solar cells with improved stability	2020	Bi-SnO2	no	FA0.4MA0.6 Pbl2.8Br0.2	one-step	spin	no	DMF	Spiro-OMeTAD	Li+TBP+FK 209	17.13
Inhibited aggregation of lithium salt in spiro- OMeTAD toward highly efficient perovskite solar cells	2020	TiO2	mTiO2	Pbl2,FAI,MA Br	two-step	spin	no	DMF+DMSO +IPA	Spiro-OMeTAD	Li+TBP	17.6

Inhibited aggregation of lithium salt in spiro- OMeTAD toward highly efficient perovskite solar cells	2020	TiO2	mTiO2	Pbl2,FAI,MA Br	two-step	spin	no	DMF+DMSO +IPA	Spiro-OMeTAD	Li+TBP+Pbl 2	20.3
Efficient defect-passivation and charge- transfer with interfacial organophosphorus ligand modification for enhanced performance of perovskite solar cells	2020	TiO2	mTiO2	Cs0.05FA0.7 9MA0.16Pb(I 0.83Br0.17)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	17.24
Efficient defect-passivation and charge- transfer with interfacial organophosphorus ligand modification for enhanced performance of perovskite solar cells	2020	TiO2	mTiO2	Cs0.05FA0.7 9MA0.16Pb(I 0.83Br0.17)3	one-step	spin 2-3	chlorobenzene +TOPO	DMF+DMSO	Spiro-OMeTAD	Li+TBP	16.85
Efficient defect-passivation and charge- transfer with interfacial organophosphorus ligand modification for enhanced performance of perovskite solar cells	2020	TiO2	mTiO2	Cs0.05FA0.7 9MA0.16Pb(I 0.83Br0.17)3	one-step	spin 2-3	chlorobenzene +TPPO	DMF+DMSO	Spiro-OMeTAD	Li+TBP	18.29
Dual-Protection Strategy for High-Efficiency and Stable CsPbl2Br Inorganic Perovskite Solar Cells	2020	SnO2	no	CsPbl2Br	one-step	spin	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP	12.17
Dual-Protection Strategy for High-Efficiency and Stable CsPbl2Br Inorganic Perovskite Solar Cells	2020	SnO2	no	BTSTh CsPbl2Br	one-step	spin	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP	15.58
Dual-Protection Strategy for High-Efficiency and Stable CsPbl2Br Inorganic Perovskite Solar Cells	2020	SnO2	no	STh CsPbl2Br	one-step	spin	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP	14.04
Dual-Protection Strategy for High-Efficiency and Stable CsPbl2Br Inorganic Perovskite Solar Cells	2020	SnO2	no	BT CsPbl2Br	one-step	spin	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP	13.87

Effect of oxygen vacancies in the electron transfer layer SiZnSnO on the performance of perovskite solar cells	2020	Si-ZnSnO	no	MAPbI3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	13.4
Mesostructured perovskite solar cells based on Zn2SnO4 Single Crystal Mesoporous Layer with efficiency of 18.32%	2020	ZnO	no	MAPbl3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	10.77
Mesostructured perovskite solar cells based on Zn2SnO4 Single Crystal Mesoporous Layer with efficiency of 18.32%	2020	SnO2	no	МАРЫЗ	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	16.9
Mesostructured perovskite solar cells based on Zn2SnO4 Single Crystal Mesoporous Layer with efficiency of 18.32%	2020	Zn2SnO4	no	MAPbl3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	14.34
Mesostructured perovskite solar cells based on Zn2SnO4 Single Crystal Mesoporous Layer with efficiency of 18.32%	2020	ZnSnO3	no	ΜΑΡΒΙ3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	16.41
Mesostructured perovskite solar cells based on Zn2SnO4 Single Crystal Mesoporous Layer with efficiency of 18.32%	2020	Zn2Sn3O8	no	ΜΑΡЫЗ	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	16
Mesostructured perovskite solar cells based on Zn2SnO4 Single Crystal Mesoporous Layer with efficiency of 18.32%	2020	ZnO	SnO2	MAPbl3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	17.54
Mesostructured perovskite solar cells based on Zn2SnO4 Single Crystal Mesoporous Layer with efficiency of 18.32%	2020	Zn2SnO4	SnO2	MAPbl3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	18.32
Mesostructured perovskite solar cells based on Zn2SnO4 Single Crystal Mesoporous Layer with efficiency of 18.32%	2020	ZnSnO3	SnO2	MAPbl3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	19.01

Mesostructured perovskite solar cells based on Zn2SnO4 Single Crystal Mesoporous	2020	Zn2Sn3O8	SnO2	MAPbl3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	18.1
Layer with efficiency of 18.32%											
Chlorinated Fullerene Dimers for Interfacial											
Engineering											
Toward Stable Planar Perovskite Solar Cells	2020	TiO2	no	MAPbl3	one-step	spin 2-3	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP	18.4
with 22.3%											
Efficiency											
Chlorinated Fullerene Dimers for Interfacial											
Engineering											
Toward Stable Planar Perovskite Solar Cells	2020	TiO2	PCBM	MAPbl3	one-step	spin 2-3	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP	17.9
with 22.3%											
Efficiency											
Chlorinated Fullerene Dimers for Interfacial											
Engineering											
Toward Stable Planar Perovskite Solar Cells	2020	TiO2	dimor	MAPbl3	one-step	spin 2-3	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP	19.9
with 22.3%			ainei								
Efficiency											
Chlorinated Fullerene Dimers for Interfacial											
Engineering											
Toward Stable Planar Perovskite Solar Cells	2020	TiO2		MAPbl3	one-step	spin 2-3	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP	19
with 22.3%			dimer								
Efficiency											
Chlorinated Fullerene Dimers for Interfacial											
Engineering											
Toward Stable Planar Perovskite Solar Cells	2020	TiO2	NMBF-CI	MAPbI3	one-step	spin 2-3	no	DWF+DMSO	Spiro-OMe I AD	LI+IBP	17.6
with 22.3%											

Efficiency											
Chlorinated Fullerene Dimers for Interfacial Engineering Toward Stable Planar Perovskite Solar Cells with 22.3% Efficiency	2020	TiO2	NMBF-H	MAPb13	one-step	spin 2-3	no	DMF+DMSO	Spiro-OMeTAD	Li+TBP	16.9
Chlorinated Fullerene Dimers for Interfacial Engineering Toward Stable Planar Perovskite Solar Cells with 22.3% Efficiency	2020	SnO2	no	(FAPbI3)x(M APbBr3)1-x	two-step	spin	no	DMF+DMSO +IPA	Spiro-OMeTAD	Li+TBP	21.4
Chlorinated Fullerene Dimers for Interfacial Engineering Toward Stable Planar Perovskite Solar Cells with 22.3% Efficiency	2020	SnO2	РСВМ	(FAPbI3)x(M APbBr3)1-x	two-step	spin	no	DMF+DMSO +IPA	Spiro-OMeTAD	Li+TBP	20.8
Chlorinated Fullerene Dimers for Interfacial Engineering Toward Stable Planar Perovskite Solar Cells with 22.3% Efficiency	2020	SnO2	NMBF-CI dimer	(FAPbI3)x(M APbBr3)1-x	two-step	spin	no	DMF+DMSO +IPA	Spiro-OMeTAD	Li+TBP	22.3
Chlorinated Fullerene Dimers for Interfacial Engineering Toward Stable Planar Perovskite Solar Cells with 22.3% Efficiency	2020	SnO2	NMBF-H dimer	(FAPbI3)x(M APbBr3)1-x	two-step	spin	no	DMF+DMSO +IPA	Spiro-OMeTAD	Li+TBP	21.3

Chlorinated Fullerene Dimers for Interfacial Engineering Toward Stable Planar Perovskite Solar Cells with 22.3% Efficiency	2020	SnO2	NMBF-CI	(FAPbI3)x(M APbBr3)1-x	two-step	spin	no	DMF+DMSO +IPA	Spiro-OMeTAD	Li+TBP	20.7
Chlorinated Fullerene Dimers for Interfacial Engineering Toward Stable Planar Perovskite Solar Cells with 22.3% Efficiency	2020	SnO2	NMBF-H	(FAPbI3)x(M APbBr3)1-x	two-step	spin	no	DMF+DMSO +IPA	Spiro-OMeTAD	Li+TBP	18.9
Multifunctional Phosphorus-Containing Lewis Acid and Base Passivation Enabling Efficient and Moisture-Stable Perovskite Solar Cells	2020	SnO2	no	Cs0.05FA0.8 MA0.15Pb(I0 .83Br0.17)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	18.05
Multifunctional Phosphorus-Containing Lewis Acid and Base Passivation Enabling Efficient and Moisture-Stable Perovskite Solar Cells	2020	SnO2	no	Cs0.05FA0.8 MA0.15Pb(I0 .83Br0.17)3- TPPO	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	19.1
Multifunctional Phosphorus-Containing Lewis Acid and Base Passivation Enabling Efficient and Moisture-Stable Perovskite Solar Cells	2020	SnO2	no	Cs0.05FA0.8 MA0.15Pb(I0 .83Br0.17)3- TMPP	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	19.13
Multifunctional Phosphorus-Containing Lewis Acid and	2020	SnO2	no	Cs0.05FA0.8 MA0.15Pb(I0	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	21.04

Base Passivation Enabling Efficient and				.83Br0.17)3-							
Moisture-Stable				TPFP							
Perovskite Solar Cells											
Graded 2D/3D Perovskite Heterostructure for											
Efficient	2020	SpO2	7n0	FA0.95Cs0.0	ono ston	coin	ablarabanzana		Spira OMaTAD	Li+TBP+FK	10.1
and Operationally Stable MA-Free Perovskite	2020	31102	2110	5Pbl3	one-step	spin	Chilorobenzene	DIVIF+DIVISO	Spiro-OwerAD	209	19.1
Solar Cells											
Graded 2D/3D Perovskite Heterostructure for				EA0.95Cc0.0							
Efficient	2020	SpO2	ZnO	5Phi3_8_	one sten	spin	chlorobenzene		Spiro-OMeTAD	Li+TBP+FK	22.2
and Operationally Stable MA-Free Perovskite	2020	01102	2110	GUA	one-step	spin	Chiorobenzene		Spilo-OmerAD	209	22.2
Solar Cells				GOA							
Graded 2D/3D Perovskite Heterostructure for				FA0 95Cs0 0							
Efficient	2020	SnO2	ZnO	5Phl3-5-	one-sten	snin	chlorobenzene		Spiro-OMeTAD	Li+TBP+FK	a
and Operationally Stable MA-Free Perovskite	2020	01102	2110		one-step	Spiri	GHIOTOBETIZETIE		opilo-ometrad	209	
Solar Cells											
Graded 2D/3D Perovskite Heterostructure for											
Efficient	2020	SnO2	ZnO	FA0.95Cs0.0	one-sten	snin	chlorobenzene		Spiro-OMeTAD	Li+TBP+FK	20.02
and Operationally Stable MA-Free Perovskite	2020	01102	2110	5Pbl3-GAI	one-step	Spiri	GHIOTOBETIZETIE		opilo-ometrad	209	20.02
Solar Cells											
Grain Boundary and Interface Passivation with				(Csl)0.04(FA							
Core-Shell Au@ CdS Nanospheres for	2020	SnO2 OD	no	I)0.82(Pbl2)0	one-sten	snin	chlorobenzene	DME+DMSO	Spiro-OMeTAD	Li+TBP	17 71
High-Efficiency Perovskite Solar Cells	2020		no	.86(MAPbBr	one stop	opin					
				3)0.14							
Grain Boundary and Interface Passivation with				(CsI)0.04(FA							
Core_Shell Au@ CdS Nanosheres for	2020	SnO2 OD	no	I)0.82(Pbl2)0	one-sten	snin	chlorobenzene		Spiro-OMeTAD	l i+TBP	21 38
High-Efficiency Perovskite Solar Cells	2020	51102 00		.86(MAPbBr	0110-3100	5011					21.00
				3)0.14(Au@							

				CdS [20:15])							
Promoting the Efficiency and Stability of											
CsPbIBr2-Based All-											
Inorganic Perovskite Solar Cells through a	2020	TiO2	no	CsPbIBr2	one-step	spin	no	DMSO	Spiro-OMeTAD	no	7.81
Functional Cu2+Doping											
Strategy											
Promoting the Efficiency and Stability of											
CsPbIBr2-Based All-											
Inorganic Perovskite Solar Cells through a	2020	TiO2	no	CsPbIBr2	one-step	spin	no	DMSO	Spiro-OMeTAD	no	10.4
Functional Cu2+Doping											
Strategy											
Promoting the Efficiency and Stability of											
CsPbIBr2-Based All-											
Inorganic Perovskite Solar Cells through a	2020	TiO2	no	CsPbIBr2	one-step	spin	no	DMSO	no	no	4.06
Functional Cu2+Doping											
Strategy											
Promoting the Efficiency and Stability of											
CsPbIBr2-Based All-				CsPhIBr2-							
Inorganic Perovskite Solar Cells through a	2020	TiO2	no	0.50%Cu	one-step	spin	no	DMSO	no	no	7.93
Functional Cu2+Doping				0.00 ///04							
Strategy											
Large-grain and smooth cesium doped											
CH3NH3Pbl3perovskite films by	2020	TiO2	no	MAPh/3	one-sten	snin 2-3	chlorobenzene	DME+DMSO	Spiro-OMeTAD	Li+TBP	10.5
cesium iodide post-treatment for improved	2020	1102			5110 5100	551120					10.0
solar cells											

Large-grain and smooth cesium doped CH3NH3Pbl3perovskite films by cesium iodide post-treatment for improved solar cells	2020	TiO2	no	MAPbl3-Csl	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP	15.3
Analysis of The Efficiency Losses in Hybrid Perovskite/PTAA Solar Cells with Different Molecular Weight: Morphology versus Kinetics.	2020	TiO2	no	(FA1-x- yMAxCsy)Pb (I1-xBrx)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	PTAA Low-MW	Li+TBP	15.67
Analysis of The Efficiency Losses in Hybrid Perovskite/PTAA Solar Cells with Different Molecular Weight: Morphology versus Kinetics.	2020	TiO2	no	(FA1-x- yMAxCsy)Pb (I1-xBrx)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	PTAA Medium- MW	Li+TBP	16.41
Analysis of The Efficiency Losses in Hybrid Perovskite/PTAA Solar Cells with Different Molecular Weight: Morphology versus Kinetics.	2020	TiO2	no	(FA1-x- yMAxCsy)Pb (I1-xBrx)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	PTAA High-MW	Li+TBP	18.65
Analysis of The Efficiency Losses in Hybrid Perovskite/PTAA Solar Cells with Different Molecular Weight: Morphology versus Kinetics.	2020	TiO2	no	(FA1-x- yMAxCsy)Pb (I1-xBrx)3	one-step	spin 2-3	chlorobenzene	DMF+DMSO	Spiro-OMeTAD	Li+TBP+FK 209	18.56

Table S2. Variables represented by "others" for the features in the first-step ML dataset.

Feature	Variables represented by "others"
	2D titania, AZO, BaSnO3, BCP, Cd2SnO4, CdS, Cs2CO3, FPDI, graphene, IBF-Ep, IL, In2S3, ITIC, Nb2O5, NDI-graphene, P123-ib, PDI, PEIE, PEIE-LiQ, PFN
EIL	ITOkısmına alsak mı, PFN-2TNDI, PS, PTEBS, TiZn2O4, WOx, Zn2SnO4, ZnS, α-Fe2O3
	CdS-nanorod, Nb2O5, PCBA, mZn2SnO4, mZrO2, 2D-graphene, C3-SAM, CdS, ITIC, Msto, m-α-Fe2O3, PA-SAM, PCBB-2CN-2C8, PEI, PS, Rgs, SAM, ZGO,
EIL-2	Au@SiO2, mSiO2

Deposition PLD, infiltration-dip, electrode position-dip, slot-die, blade-dip, Blowdry, Sprayroll, spin-MAK, MASP, spin-electrospray, dip-spin, Printed, Drip, spin-TSA, spin-OTA,

method spin-OSA, spin-contact, Dipping, Evap-spin, Spray, Vasp

Anti-solvent

HTL

IPA, n-hexane, Methoxybenzene, diisopropyl ether, Ethanol, ethylacetate treatment

NEP, NMP, DMF+PVP, DMF+PEG, DMSO+SnF2, DMF+MACI, DMF+NH4CI, DMF+HCI, DMF+IPA, DMF+IPA, DMF+cyclohexane, DMF+HBr, DMF+H3PO2, Precursor solution
NEP, NMP, DMF+PCBM+PEG, DMF+Li, DMF+HI+HBr, DMF+graphene, DMF+MCN, DMF+CuPc(tBu)4, DMF+PDM Surea, DMF+AI, DMF+PAA, DMF+PEI, DMF+PEG, DMF+BAI, DMF+NH4I, DMF+NH4SCN, DMF+CNT, DMF+s-CNT, DMF+HAc, DMF+thiourea, DMF+H3P, DMF+4MSA, DMF+TBP, DMF+BMImI, DMF+DMSO+SnF2, DMF+DMSO+SnF2+pyrazine, DMF+DMSO+thiourea, DMF+DMSO+LiI, DMF+DMSO+2-pyridylthiourea, DMF+DMSO+NMP, DMF+DMSO+PVP, DMF+DMSO+KI, DMSO+GBL+CN, DMSO+GBL+HaHc, GBL+NMP, DMSO+SnF2

2TPA-2-DP, ACR-TPA, C5PcH2, carbon+MAI, CBP, Chl-1, Chl-2, Co3O4, CoPcNO2-Oph, copolymerP, Cu2O, Cul, CuInS2, CuInS2/ZnS, CuMePc, CuPc, CuPcNO2-Oph, PF8-TAA, PFB, PFO, Ph-TPM, PIF8-TAA, PNBA, POZ2, POZ3, PTB-BO, PTB-DCB21, PTZ1, PTZ2, PTZDPP-2, CZTS-QD, CZTSe-QD, DEH, DEPT-SC, DHPT-SC, DOPT-SC, DPA-TPM, DPIE, DPIO, DR3TBDTT, DR3TBDTT- PDMS, EH44, FA-CN, FDT, Fused-F, GO, H1no1, Triazine-Th-OMeTPA, TSHBC, TTF-1, V1no39, V885, V886, V911, V928, V931, V946, V957, V9no8, X51, Z25, HBZ-7no, HTM1, HTM2, JY5, KR122, KR131, KR133, KR145, KTM3, Me-BPZTPA, Me-QTPA, MEH-PPV, mNiO, NiOx, OMeTPA-FA, OMeTPA-TPA, P3DDT, Q222, RGO-1, RGO-2, RGO-3, Rno1, SGT-411, SGT-41no, SGT-4no9, SP-no1, SP-no1-Co, SP-no2, SWNT-GO, SYN1, Q221, P3DT, P3OT, PARA1, PBDTT-FTTE, PbS QDs, PCBM, PCBTDPP, PCDTBT, PCDTBT, PCPDTBT, PCPTBT, PDI, PDPP3T, PDPPDBTE, PDTSTTz, PDTSTTz-4, Py-C, ZrO2, TFB, TiS2, TPA-CN, TPA-TPM, TPADPP-1, TPADPP-2, TPD, Triazine-Ph-OMeTPA, T1no1, T1no2, T1no3, Z26, ZnPcNO2-Oph, SWNT-PMMA

HTL additive BuPyIm-TFSI, CuI, CuSCN, D-TBP, DIO, EH44-ox+TBP, F4TCNQ, graphene, H+TBP, H-TFSI+Et4N-TFSI, H-TFSI+Et4N-TFSI+Al2O3, Li, Li+D-TBP, spiro(TFSI)2+TBP, TBP, TFSI+TBP, Li+TBP+BPO, Li+TBP+Cu(bpcm), Li+TBP+FK269, Li+TBP+Ir, Li+TBP+MY11

Table S3. The ETL and ETL-2 materials with the top importance based on the RF classification model. α-Fe₂O₃ and WO₃ are

classified into "others" for ETL while CdS is classified into "others" for ETL-2.

Material	Conduction band minimum /LUMO	Fermi level	Band gap	Conductivity	Electron mobility
	/[eV]	/[eV]	/[eV]	/[S·cm ⁻¹]	$/[cm^2 \cdot V^{-1}s^{-1}]$

	TiO ₂	~-4.2	~-4.55	~3.2-3.7	1.10×10 ⁻⁶ – 3.00×10 ⁻⁴	1
	SnO ₂	~-4.3	~-4.57	~3.6-4.1	1.76×10 ⁻⁶ – 1.77×10 ⁻¹	250
ETL	α-Fe ₂ O ₃	~-4.6	~-4.85	~2.1-2.2	2.40×10 ⁻⁷ – 1.54×10 ⁻⁵	0.06
	WO ₃	~4.2	~-5.02	~3.2-3.4	1.20×10 ⁻² - 3.40×10 ⁻²	~10 - 20
	ZnO	~-4.1	~-4.39	~3.2-3.4	/	200
	PCBM	~-4.0	~-5.04	~2.3	3.2×10^{-4}	2×10 ⁻³
	C60	~-4.5	~-4.64	~1.7	2.3×10^{-3}	1.6
	TiO ₂	~-4.2	~-4.55	~3.2-3.7	1.10×10 ⁻⁶ - 3.00×10 ⁻⁴	1
ETL 2	CdS	~-3.8	~-4.1	~2.4	/	5
EIL-2	PCBM	~-4.0	~-5.04	~2.3	3.2×10^{-4}	2×10 ⁻³
	C60	~-4.5	~-4.64	~1.7	2.3×10^{-3}	1.6
	ZnO	~-4.1	~-4.39	~3.2-3.4	/	200

Table S4. Second-step ML dataset containing doped-TiO₂-based PSCs. The meaning of the features is atomic number (AN), ionic radius (IR/[pm]), ionic charge (IC), ionization energy (IE/[kJ·mol⁻¹]), electron affinity (EA/[kJ·mol⁻¹]), electronegativity (Pauling scales), electron numbers of s, p, d, f orbits and sum of s and p orbital radii (SP orbit/[pm]) which represent the properties of the

Doping Element	AN	DA	ст	Gap	CBM	Fermi	IR	EN	SP orbital	S orbital	P orbital	D orbital	F orbital	IE	EA	IC	EIR
Nb	41	1	4.89E-06	3.02	-4.23	-4.41	62	1.6	181.9	9	18	14	0	652.13	86.1	5	1.0601
Nb	41	3	1.45E-05	2.70	-4.22	-4.20	62	1.6	181.9	9	18	14	0	652.13	86.1	5	0.9581
Nd	60	0.3	3.04E-05	2.60	-4.22	-4.34	112.3	1.14	221.8	12	24	20	4	533.08	60	3	1.0462
Nb	41	0.5	3.82E-05	3.26	-4.16	-4.11	62	1.6	181.9	9	18	14	0	652.13	86.1	5	1.0984
Nb	41	1	9.23E-06	3.25	-4.18	-4.26	62	1.6	181.9	9	18	14	0	652.13	86.1	5	1.0574
Nb	41	5	1.19E-05	3.17	-4.23	-4.15	62	1.6	181.9	9	18	14	0	652.13	86.1	5	0.7213
Та	73	1	5.50E-06	3.45	-4.12	-4.25	78	1.5	170.9	12	24	23	14	728.42	31	5	0.9949
Та	73	3	5.36E-06	3.35	-4.13	-4.39	78	1.5	170.9	12	24	23	14	728.42	31	5	1.0549
Та	73	5	4.98E-06	3.33	-4.14	-4.45	78	1.5	170.9	12	24	23	14	728.42	31	5	1.0732
Ru	44	0.5	4.82E-05	3.65	-4.06	-4.61	82	2.2	164.7	9	18	17	0	710.18	101.3	3	1.0539
Ru	44	1	7.60E-05	3.65	-3.97	-5.45	82	2.2	164.7	9	18	17	0	710.18	101.3	3	1.2374
Ru	44	2	1.70E-05	3.63	-4.09	-4.66	82	2.2	164.7	9	18	17	0	710.18	101.3	3	0.8732
Ru	44	5	3.65E-05	3.62	-4.09	-4.58	82	2.2	164.7	9	18	17	0	710.18	101.3	3	0.5772
Mg	12	0.1	3.52E-05	3.44	-4.10	-3.48	71	1.31	136.9	6	6	0	0	737.75	0	2	1.3406
к	19	0.1	2.95E-05	2.98	-4.20	-3.76	151	0.82	230	7	12	0	0	418.81	48.3	1	1.0802
к	19	0.2	3.03E-05	2.99	-4.18	-3.82	151	0.82	230	7	12	0	0	418.81	48.3	1	1.1283
к	19	0.5	3.28E-05	3.43	-4.12	-3.01	151	0.82	230	7	12	0	0	418.81	48.3	1	0.9786
Со	27	0.3	4.04E-05	3.63	-4.00	-5.32	72	1.88	131.9	8	12	7	0	760.4	63.7	2	1.3873
Co	27	1	1.28E-05	2.38	-4.20	-4.57	72	1.88	131.9	8	12	7	0	760.4	63.7	2	1.0922
Со	27	2	1.30E-05	2.77	-4.21	-4.49	72	1.88	131.9	8	12	7	0	760.4	63.7	2	1.0526

CBM (eV), bandgap (eV) and conductivity $(S \cdot cm^{-1})$ were also selected. Features in the following Table have the same meaning.

doping element. What's more features represent the optical and electrical properties of ETL after doping like and Fermi level (eV),

Ag	47	1	5.00E-10	3.83	-2.33	-5.07	114	1.93	153.2	9	18	20	0	731	125.6	1	1.1379
Zn	30	1	5.50E-06	3.73	-4.05	-5.26	74	1.65	120	8	12	10	0	906.4	0	2	1.0442
Zn	30	3	1.57E-05	3.72	-4.02	-5.50	74	1.65	120	8	12	10	0	906.4	0	2	1.1239
Zn	30	5	8.34E-05	3.58	-4.05	-5.17	74	1.65	120	8	12	10	0	906.4	0	2	1.2389
Zn	30	7	2.20E-05	3.26	-4.19	-4.29	74	1.65	120	8	12	10	0	906.4	0	2	0.9823
Sn	50	3.5	2.18E-05	3.20	-4.13	-4.60	69	1.96	253.4	10	20	20	0	708.58	107.3	4	1.2932
Pt	78	0.76	5.96E-06	3.35	-3.99	-4.66	74	2.28	159.1	11	24	29	14	864.4	205.3	2	1.1331
Sm	62	0.3	3.13E-05	3.33	-4.10	-4.31	109.8	1.17	216.4	12	24	20	6	544.54	50	3	1.1046
В	5	2.18	1.81E-05	3.78	-4.06	-5.08	25	2.04	164.6	4	1	0	0	800.64	26.7	3	1.091
Co	27	5	3.95E-06	3.11	-4.17	-4.60	72	1.88	131.9	8	12	7	0	760.4	63.7	2	1.0969
Li	3	1.25	1.23E-05	3.12	-4.16	-3.39	73	0.98	164.1	3	0	0	0	520.22	59.6	1	1.1669
Nb	41	1	4.30E-06	2.92	-4.18	-4.52	62	1.6	181.9	9	18	14	0	652.13	86.1	5	1.17
Nb	41	3	1.12E-05	2.83	-4.18	-4.67	62	1.6	181.9	9	18	14	0	652.13	86.1	5	1.2574
Nb	41	5	1.24E-05	2.90	-4.21	-4.46	62	1.6	181.9	9	18	14	0	652.13	86.1	5	1.1
Mg	12	5	5.10E-05	3.36	-4.08	-3.54	71	1.31	136.9	6	6	0	0	737.75	0	2	1.2118
Mg	12	10	1.84E-05	3.44	-4.10	-5.29	71	1.31	136.9	6	6	0	0	737.75	0	2	1.3406
Cs	55	4.77	2.89E-05	3.31	-4.16	-4.54	181	0.79	282.4	11	24	20	0	375.7	45.5	1	1.6379
Mg	12	5	3.55E-06	3.36	-4.12	-2.93	71	1.31	136.9	6	6	0	0	737.75	0	2	1.0346
Mg	12	10	2.64E-06	3.44	-4.07	-3.45	71	1.31	136.9	6	6	0	0	737.75	0	2	1.1089
F	9	1	4.47E-06	3.52	-4.09	-2.42	117	3.98	78.7	4	5	0	0	1681.05	328	-1	1.0128
F	9	3	5.45E-06	3.15	-4.12	-3.22	117	3.98	78.7	4	5	0	0	1681.05	328	-1	1.1136
F	9	5	6.03E-06	3.14	-4.13	-3.22	117	3.98	78.7	4	5	0	0	1681.05	328	-1	1.115
F	9	10	6.24E-06	3.40	-4.16	-2.28	117	3.98	78.7	4	5	0	0	1681.05	328	-1	0.8858
Sn	50	5	6.21E-06	3.45	-3.91	-3.64	69	1.96	253.4	10	20	20	0	708.58	107.3	4	1.176
Er	68	0.68	2.61E-05	3.37	-4.00	-4.19	103	1.24	203.1	12	24	20	12	589.3	50	3	1.1293
Ni	28	1	3.04E-06	3.46	-3.96	-3.97	69	1.91	127.6	8	12	8	0	737.14	112	2	1.1037

Nb	41	1	1.30E-05	3.22	-4.14	-4.14	62	1.6	181.9	9	18	14	0	652.13	86.1	5	1.022
Nb	41	5	1.27E-05	3.21	-4.23	-4.23	62	1.6	181.9	9	18	14	0	652.13	86.1	5	1.0934
Nb	41	10	1.58E-05	3.18	-4.23	-4.23	62	1.6	181.9	9	18	14	0	652.13	86.1	5	0.9341
Nb	41	20	1.65E-05	3.09	-4.40	-4.40	62	1.6	181.9	9	18	14	0	652.13	86.1	5	0.7802
Mg	12	4	3.74E-08	3.49	-4.07	-3.59	71	1.31	136.9	6	6	0	0	737.75	0	2	1.1761
Mg	12	5.5	2.85E-08	3.45	-4.08	-3.41	71	1.31	136.9	6	6	0	0	737.75	0	2	1.1051
Sn	50	1	1.78E-09	3.67	-3.84	-6.34	69	1.96	253.4	10	20	20	0	708.58	107.3	4	1.2743
Ag	47	1	3.65E-09	3.29	-4.07	-4.71	114	1.93	153.2	9	18	20	0	731	125.6	1	1.1875
Zn	30	1	3.65E-09	3.24	-4.10	-4.87	74	1.65	120	8	12	10	0	906.4	0	2	1.2589
AI	13	0.5	7.23E-05	3.12	-4.51	2.46	53	1.61	253.2	6	7	0	0	577.54	42.5	3	1.2228
Mg	12	0.5	4.04E-05	3.22	-4.36	2.41	71	1.31	136.9	6	6	0	0	737.75	0	2	1.0653
Er	68	3	1.07E-05	3.07	-4.16	-4.51	103	1.24	203.1	12	24	20	12	589.3	50	3	1.165
Ag	47	0.1	3.92E-05	3.71	-4.08	-4.86	114	1.93	153.2	9	18	20	0	731	125.6	1	1.0531
Ag	47	0.5	8.93E-05	3.71	-4.08	-4.65	114	1.93	153.2	9	18	20	0	731	125.6	1	1.0619
Ag	47	1	3.00E-04	3.72	-4.00	-5.55	114	1.93	153.2	9	18	20	0	731	125.6	1	1.2212
Ag	47	3	5.98E-05	3.72	-4.11	-4.69	114	1.93	153.2	9	18	20	0	731	125.6	1	0.354
Cd	48	5	3.31E-05	3.03	-4.19	-4.60	92	1.69	136.8	10	18	20	0	867.77	0	2	1.29
Ga	31	3	1.10E-06	3.59	-4.09	-4.99	61	1.81	245.8	8	13	10	0	578.84	28.9	3	1.0875
Ga	31	5	1.60E-06	3.51	-4.08	-4.74	61	1.81	245.8	8	13	10	0	578.84	28.9	3	1.1055
Ga	31	7	2.05E-06	3.28	-4.09	-4.75	61	1.81	245.8	8	13	10	0	578.84	28.9	3	1.1668
Ga	31	9	8.50E-07	3.52	-4.10	-4.70	61	1.81	245.8	8	13	10	0	578.84	28.9	3	1.07
Li	3	0.3	3.45E-05	3.10	-4.10	-2.89	73	0.98	164.1	3	0	0	0	520.22	59.6	1	1.0885
Zn	30	1	3.36E-05	3.71	-4.10	-6.00	74	1.65	120	8	12	10	0	906.4	0	2	1.0769
Zn	30	3	4.24E-05	3.71	-4.05	-5.97	74	1.65	120	8	12	10	0	906.4	0	2	1.1692
Zn	30	5	9.34E-06	3.68	-3.92	-5.90	74	1.65	120	8	12	10	0	906.4	0	2	1.2923
Zn	30	7	2.30E-05	3.65	-3.80	-5.84	74	1.65	120	8	12	10	0	906.4	0	2	1.1846

Nb	41	6	1.43E-04	3.77	-3.82	-4.79	62	1.6	181.9	9	18	14	0	652.13	86.1	5	1.6404
Се	58	2	1.09E-05	3.20	-4.14	-4.38	115	1.12	216.9	12	24	21	1	534.39	50	3	1.1149
AI	13	1	5.49E-05	3.00	-4.60	-4.90	53	1.61	253.2	6	7	0	0	577.54	42.5	3	1.2234
Er	68	0.5	3.57E-05	3.21	-4.12	-4.18	103	1.24	203.1	12	24	20	12	589.3	50	3	1.1274
Ru	44	0.1	2.96E-05	3.51	-4.11	-3.93	82	2.2	164.7	9	18	17	0	710.18	101.3	3	1.03
Ru	44	0.05	3.23E-05	3.53	-4.05	-4.57	82	2.2	164.7	9	18	17	0	710.18	101.3	3	1.1356
Ru	44	0.2	3.06E-05	3.48	-4.10	-4.04	82	2.2	164.7	9	18	17	0	710.18	101.3	3	1.0123
Ru	44	0.3	2.87E-05	3.41	-4.15	-4.04	82	2.2	164.7	9	18	17	0	710.18	101.3	3	0.946
Ce	58	0.3	5.46E-05	3.58	-4.18	-4.12	115	1.12	216.9	12	24	21	1	534.39	50	3	1.0756
Та	73	0.05	2.11E-05	3.04	-4.22	-4.47	78	1.5	170.9	12	24	23	14	728.42	31	5	1.0424
Та	73	0.1	2.34E-05	2.97	-4.24	-4.50	78	1.5	170.9	12	24	23	14	728.42	31	5	1.1016
Та	73	0.15	3.00E-05	3.05	-4.21	-4.45	78	1.5	170.9	12	24	23	14	728.42	31	5	1.0735
Та	73	0.2	4.33E-05	3.11	-4.20	-4.42	78	1.5	170.9	12	24	23	14	728.42	31	5	1.0395
Li	3	0.3	3.31E-05	3.07	-4.10	-2.89	73	0.98	164.1	3	0	0	0	520.22	59.6	1	1.0885
Ru	44	1	1.17E-05	3.15	-3.80	-3.72	82	2.2	164.7	9	18	17	0	710.18	101.3	3	1.17
Nb	41	6	1.82E-05	3.79	-3.82	-3.82	62	1.6	181.9	9	18	14	0	652.13	86.1	5	0.9934
Та	73	1	1.64E-06	3.58	-4.38	-3.80	78	1.5	170.9	12	24	23	14	728.42	31	5	0.9816
Та	73	3	3.29E-06	3.55	-4.40	-5.04	78	1.5	170.9	12	24	23	14	728.42	31	5	1.3926
Та	73	5	2.68E-06	3.47	-4.41	-3.70	78	1.5	170.9	12	24	23	14	728.42	31	5	0.9202
CI	17	0.4	3.90E-06	3.76	-4.07	-3.97	167	3.16	144.4	6	11	0	0	1251.19	349	-1	1.0417
Ru	44	1.5	2.06E-05	3.49	-3.96	-3.14	82	2.2	164.7	9	18	17	0	710.18	101.3	3	1.3604
Zn	30	1	1.29E-05	3.07	-4.13	-4.52	74	1.65	120	8	12	10	0	906.4	0	2	1.0742
Zn	30	2.5	1.31E-05	3.08	-4.10	-4.56	74	1.65	120	8	12	10	0	906.4	0	2	1.0909
Zn	30	5	1.58E-05	3.04	-4.09	-4.37	74	1.65	120	8	12	10	0	906.4	0	2	0.8907

Doping	ΔΝ	DA	СТ	Gan	CBM	Fermi	IR	FN	SP orbital	S orbital	P orbital	D orbital	E orbital	IE	FΔ	IC	FIR
Element	7.1.1	DIT	01	Oup	ODIVI	i cinii			Of ofbital	0 orbitar	i orbitar	Dorbital	1 orbitar	12	L/(10	LIIV
Li	3	0.000	4.14E-05	3.95	-4.22	-4.70	73	0.98	164.1	3	0	0	0	520.22	59.6	1	1

 Table S5. Second-step ML dataset containing doped-SnO₂-based PSCs.

Li	3	0.017	9.10E-05	3.95	-4.35	-4.85	73	0.98	164.1	3	0	0	0	520.22	59.6	1	1.163
Мо	42	0.000	3.62E-06	3.89	-4.25	-4.74	55	2.16	175.3	9	18	15	0	684.32	71.9	6	1
Мо	42	0.010	4.89E-06	3.89	-4.25	-4.54	55	2.16	175.3	9	18	15	0	684.32	71.9	6	1.242
Y	39	0.000	7.50E-06	3.65	-4.42	-5.19	104	1.22	189.1	10	18	11	0	599.87	20.6	3	1
Y	39	0.030	1.05E-05	3.70	-4.29	-5.11	104	1.22	189.1	10	18	11	0	599.87	20.6	3	1.319
Zn	30	0.000	2.44E-06	3.86	-4.28	-4.16	74	1.65	120	8	12	10	0	906.4	0	2	1
Zn	30	0.029	3.26E-06	3.86	-4.19	-4.12	74	1.65	120	8	12	10	0	906.4	0	2	1.161
Y	39	0.000	1.12E-02	3.65	-4.45	-5.25	104	1.22	189.1	10	18	11	0	599.87	20.6	3	1
Y	39	0.018	6.60E-04	3.70	-4.26	-5.19	104	1.22	189.1	10	18	11	0	599.87	20.6	3	1.145
Zr	40	0.000	6.70E-06	4.04	-4.15	-4.29	73	1.33	178.5	10	18	12	0	640.1	41.1	4	1
Zr	40	0.030	8.90E-06	4.07	-4.02	-4.18	73	1.33	178.5	10	18	12	0	640.1	41.1	4	1.106
Nb	41	0.000	5.89E-05	3.94	-4.18	-4.35	62	1.6	181.9	9	18	14	0	652.13	86.1	5	1
Nb	41	0.003	1.68E-04	3.95	-4.16	-4.33	62	1.6	181.9	9	18	14	0	652.13	86.1	5	1.065
Nb	41	0.005	2.14E-05	3.95	-4.17	-4.37	62	1.6	181.9	9	18	14	0	652.13	86.1	5	1.161
Nb	41	0.008	2.50E-04	3.95	-4.15	-4.29	62	1.6	181.9	9	18	14	0	652.13	86.1	5	1.075
Nb	41	0.010	2.78E-04	3.95	-4.15	-4.28	62	1.6	181.9	9	18	14	0	652.13	86.1	5	1.04
Mg	12	0.000	1.77E-01	3.95	-4.31	-5.33	71	1.31	136.9	6	6	0	0	737.75	0	2	1
Mg	12	0.025	1.30E-02	3.76	-4.98	-5.45	71	1.31	136.9	6	6	0	0	737.75	0	2	1.518
Mg	12	0.050	1.79E-02	3.72	-4.73	-5.46	71	1.31	136.9	6	6	0	0	737.75	0	2	1.667
Mg	12	0.075	1.06E-02	3.70	-4.88	-5.47	71	1.31	136.9	6	6	0	0	737.75	0	2	1.887
Mg	12	0.100	1.04E-02	3.93	-4.85	-5.49	71	1.31	136.9	6	6	0	0	737.75	0	2	1.446
Mg	12	0.200	9.83E-03	3.95	-4.90	-5.50	71	1.31	136.9	6	6	0	0	737.75	0	2	1.381
La	57	0.000	1.49E-03	4.04	-4.09	-4.33	117.2	1.1	220.1	12	24	21	0	538.09	48	3	1
La	57	0.025	2.60E-03	4.05	-4.02	-4.31	117.2	1.1	220.1	12	24	21	0	538.09	48	3	1.199
La	57	0.050	2.61E-03	4.07	-3.94	-4.25	117.2	1.1	220.1	12	24	21	0	538.09	48	3	1.119
Li	3	0.000	1.25E-03	4.20	-4.20	-4.50	73	0.98	164.1	3	0	0	0	520.22	59.6	1	1

Li	3	0.020	1.82E-03	4.19	-4.19	-4.49	73	0.98	164.1	3	0	0	0	520.22	59.6	1	1.004
Mg	12	0.020	1.92E-03	4.17	-4.14	-4.98	71	1.31	136.9	6	6	0	0	737.75	0	2	1.087
Sb	51	0.020	1.70E-03	4.16	-4.04	-4.33	90	2.05	233.1	10	21	20	0	830.58	103.2	3	1.103
Sc	21	0.030	2.36E-05	3.95	-4.19	-5.03	88.5	1.36	171.6	8	12	1	0	633.09	18.1	3	1.164
Y	39	0.030	2.76E-05	3.95	-4.13	-5.01	104	1.22	189.1	10	18	11	0	599.87	20.6	3	1.199
La	57	0.030	2.26E-05	3.96	-4.25	-5.09	117.2	1.1	220.1	12	24	21	0	538.09	48	3	1.132
Та	73	0.000	7.25E-03	3.70	-4.34	-4.60	78	1.5	170.9	12	24	23	14	728.42	31	5	1
Та	73	0.051	6.54E-03	3.70	-4.52	-4.56	78	1.5	170.9	12	24	23	14	728.42	31	5	1.113
Nd	60	0.000	6.22E-03	4.00	-4.40	-4.64	112.3	1.14	221.8	12	24	20	4	533.08	60	3	1
Nd	60	0.050	8.99E-04	4.00	-4.14	-4.37	112.3	1.14	221.8	12	24	20	4	533.08	60	3	1.094
Nb	41	0.000	4.31E-03	4.11	-4.04	-4.03	62	1.6	181.9	9	18	14	0	652.13	86.1	5	1
Nb	41	0.010	1.96E-03	4.08	-4.07	-4.17	62	1.6	181.9	9	18	14	0	652.13	86.1	5	1.053
Nb	41	0.020	1.95E-03	4.02	-4.13	-4.08	62	1.6	181.9	9	18	14	0	652.13	86.1	5	1.098
Nb	41	0.040	3.77E-03	4.00	-4.15	-3.93	62	1.6	181.9	9	18	14	0	652.13	86.1	5	1.022
Nb	41	0.080	3.90E-03	3.93	-4.22	-4.02	62	1.6	181.9	9	18	14	0	652.13	86.1	5	0.995
F	9	0.000	3.73E-04	3.87	-4.41	-4.61	117	3.98	78.7	4	5	0	0	1681.05	328	-1	1
F	9	0.100	5.34E-04	3.89	-4.33	-4.55	117	3.98	78.7	4	5	0	0	1681.05	328	-1	1.033
F	9	0.150	1.27E-03	3.91	-4.27	-4.48	117	3.98	78.7	4	5	0	0	1681.05	328	-1	1.068
F	9	0.200	3.72E-03	3.92	-4.15	-4.41	117	3.98	78.7	4	5	0	0	1681.05	328	-1	1.114
F	9	0.300	6.37E-04	3.91	-4.30	-4.53	117	3.98	78.7	4	5	0	0	1681.05	328	-1	0.995
F	9	0.500	2.65E-04	3.89	-4.27	-4.48	117	3.98	78.7	4	5	0	0	1681.05	328	-1	0.908
F	9	0.700	1.12E-04	3.89	-4.27	-4.55	117	3.98	78.7	4	5	0	0	1681.05	328	-1	0.822
F	9	1.000	7.35E-05	3.89	-4.27	-4.55	117	3.98	78.7	4	5	0	0	1681.05	328	-1	0.775
AI	13	0.000	9.49E-03	3.60	-4.40	-4.59	53	1.61	253.2	6	7	0	0	577.54	42.5	3	1
AI	13	0.050	2.21E-03	3.60	-4.40	-4.60	53	1.61	253.2	6	7	0	0	577.54	42.5	3	1.341
Та	73	0.000	2.40E-03	3.92	-4.20	-4.36	78	1.5	170.9	12	24	23	14	728.42	31	5	1

Та	73	0.010	4.72E-03	3.96	-4.19	-4.34	78	1.5	170.9	12	24	23	14	728.42	31	5	1.068
Та	73	0.005	2.24E-03	3.93	-4.19	-4.35	78	1.5	170.9	12	24	23	14	728.42	31	5	1.018
Та	73	0.020	2.66E-03	3.95	-4.17	-4.33	78	1.5	170.9	12	24	23	14	728.42	31	5	1.024
In	49	0.000	1.14E-03	3.91	-4.07	-4.39	76	1.78	281.8	10	19	20	0	558.3	28.9	3	1
In	49	0.050	9.56E-03	3.87	-4.24	-4.52	76	1.78	281.8	10	19	20	0	558.3	28.9	3	1.09
Sb	51	0.000	1.77E-05	3.76	-4.43	-4.72	90	2.05	233.1	10	21	20	0	830.58	103.2	3	1
Sb	51	0.050	2.64E-05	3.78	-4.54	-4.66	90	2.05	233.1	10	21	20	0	830.58	103.2	3	1.052
Mg	12	0.000	4.71E-02	3.71	-4.23	-4.97	71	1.31	136.9	6	6	0	0	737.75	0	2	1
Mg	12	0.050	1.95E-02	3.97	-4.89	-5.54	71	1.31	136.9	6	6	0	0	737.75	0	2	1.149
Li	3	0.000	2.54E-03	4.07	-4.22	-4.47	73	0.98	164.1	3	0	0	0	520.22	59.6	1	1
Li	3	0.319	4.93E-03	4.04	-4.35	-4.67	73	0.98	164.1	3	0	0	0	520.22	59.6	1	1.629
Ru	44	0.000	1.40E-05	3.72	-4.30	-5.35	82	2.2	164.7	9	18	17	0	710.18	101.3	3	1
Ru	44	0.020	2.70E-05	3.71	-4.03	-5.18	82	2.2	164.7	9	18	17	0	710.18	101.3	3	1.089
Bi	83	0.000	1.19E-02	3.48	-4.33	-4.10	117	2.02	250.5	12	27	30	14	72.95	91.2	3	1
Bi	83	0.055	5.04E-03	3.48	-4.14	-4.06	117	2.02	250.5	12	27	30	14	72.95	91.2	3	1.081
AI	13	0.010	3.10E-04	3.92	-3.91	-4.16	53	1.61	253.2	6	7	0	0	577.54	42.5	3	1.085
La	57	0.010	2.67E-03	3.89	-3.92	-4.18	117.2	1.1	220.1	12	24	21	0	538.09	48	3	1.082
к	19	0.000	6.27E-04	3.70	-4.05	-4.14	151	0.82	230	7	12	0	0	418.81	48.3	1	1
к	19	0.060	7.95E-04	3.70	-4.19	-4.23	151	0.82	230	7	12	0	0	418.81	48.3	1	1.099
Li	3	0.000	1.76E-06	4.00	-4.24	-4.64	73	0.98	164.1	3	0	0	0	520.22	59.6	1	1
Li	3	0.001	1.37E-05	4.01	-4.21	-4.65	73	0.98	164.1	3	0	0	0	520.22	59.6	1	1.066
F	9	0.000	6.10E-04	3.83	-4.30	-4.48	117	3.98	78.7	4	5	0	0	1681.05	328	-1	1
F	9	0.111	1.02E-03	3.86	-4.20	-4.24	117	3.98	78.7	4	5	0	0	1681.05	328	-1	1.053
Zn	30	0.000	7.60E-06	4.51	-4.06	-5.57	74	1.65	120	8	12	10	0	906.4	0	2	1
Zn	30	0.030	1.05E-05	4.44	-3.85	-5.44	74	1.65	120	8	12	10	0	906.4	0	2	1.064
С	6	0.000	2.35E-04	4.01	-3.94	-4.25	29	2.55	129	4	2	0	0	1086.45	153.9	4	1

С	6	0.004	5.01E-04	4.01	-4.00	-4.04	29	2.55	129	4	2	0	0	1086.45	153.9	4	1.497
к	19	0.000	1.82E-04	4.05	-3.23	-3.90	151	0.82	230	7	12	0	0	418.81	48.3	1	1
к	19	0.054	4.48E-04	3.95	-3.34	-3.59	151	0.82	230	7	12	0	0	418.81	48.3	1	1.149
Rb	37	0.000	3.01E-06	3.78	-3.70	-3.90	166	0.82	249	9	18	10	0	403.3	46.9	1	1
Rb	37	0.035	4.26E-06	3.80	-3.75	-3.90	166	0.82	249	9	18	10	0	403.3	46.9	1	1.054
Р	15	0.000	2.65E-03	3.90	-4.19	-4.27	31	2.19	181.5	6	9	0	0	1011.81	72	5	1
Р	15	0.074	6.20E-04	3.88	-4.18	-4.25	31	2.19	181.5	6	9	0	0	1011.81	72	5	1.069
S	16	0.000	1.30E-02	3.97	-4.40	-4.48	26	2.58	160.6	6	10	0	0	999.59	200	6	1
S	16	0.011	1.07E-02	3.97	-4.32	-4.35	26	2.58	160.6	6	10	0	0	999.59	200	6	1.073
Sm	62	0.000	5.03E-03	3.68	-4.37	-4.46	109.8	1.17	216.4	12	24	20	6	544.54	50	3	1
Mg	12	0.000	3.36E-02	3.77	-4.31	-5.00	71	1.31	136.9	6	6	0	0	737.75	0	2	1

Dopant	AN	IR	EN	SP orbit	S orbit	P orbit	D orbit	F orbit	IE	EA	IC
Cs	55	181	0.79	282.4	11	24	20	0	375.7	45.5	1
CI	17	167	3.16	144.4	6	11	0	0	1251.19	349	-1
Rb	37	166	0.82	249	9	18	10	0	403.3	46.9	1
к	19	151	0.82	230	7	12	0	0	418.81	48.3	1
La	57	117.2	1.1	220.1	12	24	21	0	538.09	48	3
Bi	83	117	2.02	250.5	12	27	30	14	72.95	91.2	3
F	9	117	3.98	78.7	4	5	0	0	1681.05	328	-1
Ce	58	115	1.12	216.9	12	24	21	1	534.39	50	3
Ag	47	114	1.93	153.2	9	18	20	0	731.00	125.6	1
Nd	60	112.3	1.14	221.8	12	24	20	4	533.08	60	3
Sm	62	109.8	1.17	216.4	12	24	20	6	544.54	50	3
Y	39	104	1.22	189.1	10	18	11	0	599.87	20.6	3
Er	68	103	1.24	203.1	12	24	20	12	589.3	50	3
Cd	48	92	1.69	136.8	10	18	20	0	867.77	0	2
Sb	51	90	2.05	233.1	10	21	20	0	830.58	103.2	3
Sc	21	88.5	1.36	171.6	8	12	1	0	633.09	18.1	3
Ru	44	82	2.2	164.7	9	18	17	0	710.18	101.3	3
Та	73	78	1.5	170.9	12	24	23	14	728.42	31	5
Fe	26	77	1.83	136.6	8	12	6	0	762.47	15.7	2
In	49	76	1.78	281.8	10	19	20	0	558.3	28.9	3
Zn	30	74	1.65	120	8	12	10	0	906.40	0	2
Pt	78	74	2.28	159.1	11	24	29	14	864.4	205.3	2
Li	3	73	0.98	164.1	3	0	0	0	520.22	59.6	1
Zr	40	73	1.33	178.5	10	18	12	0	640.1	41.1	4
Co	27	72	1.88	131.9	8	12	7	0	760.4	63.7	2
Mg	12	71	1.31	136.9	6	6	0	0	737.75	0	2
Ni	28	69	1.91	127.6	8	12	8	0	737.14	112	2
Sn	50	69	1.96	253.4	10	20	20	0	708.58	107.3	4
Nb	41	62	1.6	181.9	9	18	14	0	652.13	86.1	5
Ga	31	61	1.81	245.8	8	13	10	0	578.84	28.9	3
Ti	22	56	1.54	162.2	8	12	2	0	658.81	7.6	4
Мо	42	55	2.16	175.3	9	18	15	0	684.32	71.9	6
AI	13	53	1.61	253.2	6	7	0	0	577.54	42.5	3
Р	15	31	2.19	181.5	6	9	0	0	1011.81	72	5
С	6	29	2.55	129	4	2	0	0	1086.45	153.9	4
N	7	27	3.04	106.2	4	3	0	0	1402.33	7	5
S	16	26	2.58	160.6	6	10	0	0	999.59	200	6
В	5	25	2.04	164.6	4	1	0	0	800.64	26.7	3

Table S6. Physical and chemical properties of doping elements.

Following is the code of the classification in the first-step ML:

from sklearn.tree import DecisionTreeClassifier from sklearn.tree import ExtraTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import accuracy_score from xgboost.sklearn import XGBClassifier from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.multiclass import OneVsRestClassifier from sklearn import svm import matplotlib.pyplot as plt import pandas as pd import numpy as np

features = pd.read_excel('xxx.xlsx')# "xxx" is the file of your dataset features = pd.get_dummies(features) features.to_excel('one-hot-data.xlsx') labels = np.array(features['label']) features = features.drop('label', axis=1) classes = ['0', '1', '2']# Class A, Class B, Class C

```
x_train, x_test, y_train, y_test = train_test_split(features, labels, test_size=0.20, random_state=42)
models = [DecisionTreeClassifier(), ExtraTreeClassifier(), RandomForestClassifier(),
AdaBoostClassifier(),
```

GradientBoostingClassifier(), XGBClassifier(), MLPClassifier(), OneVsRestClassifier(svm.SVC())]

#

models_str = ['DecisionTree', 'ExtraTree', 'RandomForest', 'AdaBoost',
'GradientBoost', 'XGBoost', 'MLPClassifier', 'SVM']

Tree = ['DecisionTree', 'ExtraTree', 'RandomForest', 'AdaBoost', 'GradientBoost', 'XGBoost'] linear_neural = ['MLPClassifier', 'SVM']

result = pd.DataFrame(columns=('model', 'dataset', 'accuracy', 'accuracy(%)'))

ETL = ['ETL_BCP', 'ETL_C60', 'ETL_PCBM', 'ETL_PEDOT:PSS', 'ETL_SnO2', 'ETL_TiO2', 'ETL_ZnO', 'ETL_no', 'ETL_others',

'ETL-2_Al2O3', 'ETL-2_C60', 'ETL-2_PCBM', 'ETL-2_TiO2', 'ETL-2_ZnO', 'ETL-2_no', 'ETL-2_others']

model_jude = pd.DataFrame()

classifiers = [

['DecisionTree', DecisionTreeClassifier(random state=42, max depth=15)], ['ExtraTree', ExtraTreeClassifier(random state=42, max depth=13)], ['RandomForest', RandomForestClassifier(random state=42, max depth=14)], ['AdaBoost', AdaBoostClassifier(random state=42)], ['GradientBoost', GradientBoostingClassifier(random state=42, max depth=13)], ['XGBoost', XGBClassifier(random state=42, max depth=13)], ['MLPClassifier', MLPClassifier(solver='lbfgs', alpha=1e-5, hidden layer sizes=(15, 15), random state=42, max iter=100)], ['SVM', OneVsRestClassifier(svm.SVC(kernel='poly', probability=True, random state=42))] 1 for name, pipeline in classifiers: model = pipeline.fit(x train, y train)

predictions_train = model.predict(x_train)
predictions_test = model.predict(x_test)
accracy_train = round(accuracy_score(y_true=y_train, y_pred=predictions_train),4)
accracy_test = round(accuracy_score(y_true=y_test, y_pred=predictions_test), 4)
print(str(name)+"train_Accuracy:", accracy_train)
print(str(name)+"test_Accuracy:", accracy_test)