Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

A dual-biomimetic knitted fabric with manipulative structure and

wettability for highly efficient fog harvesting

Zhihua Yu^a, Shuhui Li^b, Mingming Liu^a,*, Ruofei Zhu^a, Mengnan Yu^a, Xiuli Dong^a, Yaxin Sun^a and Shaohai Fu^{a,*}

^aJiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key

Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu

214122, China

^bWenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011,

PR China

b. Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, PR China.

* Corresponding authors.

a. Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, China.

Fig. S1 SEM and XPS of SHL yarns (a,c) and SHB yarns (b,d), insets are the WCA of

SHL

and

SHB

yarns.

Fig. S2 The drawing plan of SHL-SHB@TF. Each row represents a single yarn, and each column represents the shape of the yarn at that position. As indicated by red frame, a basic structure of SHL-SHB@TF costs 5 rows and 2 columns. A green cell and violet cell represent that the yarn at that position forms an elongated closed loop (Looping) and an unclosed V-shape loop (Tucking), respectively. By replacing the 5th yarn with a SHB yarn to obtain SHL-SHB@TF.

Fig. S3 Atomic ratio of each element of SHL-SHB@TF.

Fig. S4 Illustration of aerodynamic deviation. When the fog flows to the FHD, it will be subjected to the resistance generated by the FHD, thereby causing it to deviation. The solid curves represent the fog flow which can flow into the FHD domain, and the dotted curves represent the fog flow which circumventing the mesh domain.

Fig. S5 Fog capturing photos during 5 min of SHL@TF (a), SHB@TF (b),

SHL@WPF	(c)	and	SHB@WPF	(d)
---------	-----	-----	---------	-----

Fig. S6 Fog harvesting process of SHL-SHB@TF, including fog droplets condense,

coalescence,	
--------------	--

directional

move

and

slide down.

Fig. S7 (a) Clamps and specimen mounted in the tensile test machine. This particularspecimen is mounted with the transverse knitting direction oriented along the loadingdirection (vertical). (b) Force per unit width vs. elongation of Tuck fabric (blue) andWeftplainplainfabric(red).

Fig. S8 (a) Long-time continuous fog harvesting test (12 h) of original SHL-SHB@TF, SHL-SHB@TF after 12 h UV irradiation, and salt fog harvesting of SHL-SHB@TF. (b-d) the surface morphology, chemical composition and contact angle of original SHB yarn (b), SHB yarn after 12 h continuous fog harvesting (c), SHB yarn after 12 h UV irradiation (d) and SHB yarn after 12 h of salt fog harvesting (e).

Fig. S9 (a) The wettability of SHB yarn during fog harvesting process. The rolling angle of the SHB yarn in 90 min (b) and after drying (c).

Fig. S10 Antibacterial property of the cotton fabric and SHL-SHB@TF, insets are the optical photographs of bacteria attachment.

Structure	Wettability	Shadow coefficient	Position	Water harvesting rate (mg h ⁻¹ cm ⁻²)
WPF	SHL	42.6%	Downward	1866
WPF	SHB	42.6%	Downward	2374
WPF	SHB-SHL	42.6%	Downward	3874
TF	SHL	59.8%	Downward	2700
TF	SHB	59.8%	Downward	3203
TF	SHB-SHL	59.8%	Downward	4240
TF	SHL-SHB	59.8%	Downward	5424
TF	SHL-SHB	59.8%	Leftward	4492
TF	SHL-SHB	59.8%	Upward	3820

Table S1. A brief summary of the WHR about the mentioned 7 samples.

N o	Fog harvesting device	Fog flow rate Distance RH	WH R	Cost (\$ m ⁻²)	Biggest defect	Refs.
1	Artificial periodic roughness-gradient conical copper wire	1.8 m s ⁻¹ / 90%	$618 \ mg \ cm^{-2} \ h^{-1}$	~ 79	Complex preparation process, high cost	(1)
2	A 600 mm ² SHL bulgy surface with 120 SHB bulges on it	252 g h ⁻¹ 12 cm 85%	430 mg cm ⁻² h ⁻¹	~ 24	Complex preparation process and structure	(2)
3	The 3H fog harvesting surface fabricated by hot pressing of hydrophobic silica stripes on hydrophilic foam of melamine resin.	120 cm s ⁻¹ 5 cm /	2000 mg h ⁻¹ cm ⁻²	~ 11	The roles of SHL wires and PDMS in the fog harvesting process are independent of each other	(3)
4	The connection of SHL copper wires and SHB PDMS	50 cm s ⁻¹ 2 cm /	$1300 \ mg \ cm^{-2} \ h^{-1}$	were	The roles of SHL wires and PDMS in the fog harvesting process are independent of each other	(4)

Table S2. The comparison of the WHR and the cost performance of the fogharvesting devices.

5	Spraying micronanoparticles on SSM substrate and subsequent modification	50 cm s ⁻¹ 5 cm 85~90%	1700 mg h ⁻¹ cm ⁻²	~ 5	The SHB-SHL pattern formed by particles was random	(5)
6	Three-layer sandwiched fog collector consisting of a SHL inner mesh and two SHB outer meshes	100 cm s ⁻¹ 6 cm 60%	3700 mg h ⁻¹ cm ⁻²	~ 15	Two SHB outer meshes were difficult to capture fog droplets	(6)
7	A binary cooperative Janus fog collector integrated by SHLcotton absorbent and SHB copper mesh	70 cm s ⁻¹ 5 cm /	900 mg cm^{-2} h^{-1}	~ 4	Captured fog water may be absorbed by SHL cotton and re- evaporation instead of harvested	(7)
8	Double-layer harp made of hydrophilic stainless steel wires	Fog tower / /	362. 7 g min ⁻ ¹ ·m ⁻ ² ,	~ 5	The captured droplets were difficult detached from hydrophilic stainless steel wires	(8)
9	Alloy net with gradient wettability	0.45 m s ⁻¹ 5 cm 90%	$1050 \ mg \ cm^{-2} \ h^{-1}$	~ 8	Complex preparation process.	(9)
10	Patterned fabric through UV irradiation selective modification	10 cm s ⁻¹ 10 cm 90%	12,6 71 mg cm^{-2} h^{-1}	~ 3	During long- term application, the hydrophobic area may change to hydrophilic due to UV irradiation.	(10)

12	bumps Fabric made of 3D printed asymmetric fibers	195 L m ⁻² day ⁻¹ / /	195 L m ⁻ ² day -1	~ 30	to UV irradiation. Lack of investigation of macroscopic physical	(12)
13	A patterned fabric woven from SHB and SHL yarn	300 g h ⁻¹ 20 cm 90%	$1432 \\ .7 \\ mg \\ cm^{-2} \\ h^{-1}$	~ 1.5	The impermeable structure were generated resistance to the fog flow, caused the fog flow to deviate, and reduced fog capture efficiency	(13)
14	PVDF nanofibers directly deposit on Raschel mesh	0.19 m·s ⁻¹ 6 cm 95% to 99%	$64 \ mg \ cm^{-2} \ h^{-1}$	~ 4	The bonding force between the nanofiber and the mesh was poor	(14)
15	Knited fabric with numorous conical channel and patterned wettability	300 g h ⁻¹ 5 cm 90%	5424 mg cm ⁻² h ⁻¹	~1	/	This work

References in the figure are shown below.

1. T. Xu et al. ACS Nano, 2016, **10**, 10681.

2. L. Zhong et al. J. Colloid Interf. Sci., 2018, 525, 234-242.

- 3. H. Bai et al. J. Mater. Chem. A, 2018, 6, 20966.
- 4. L. Zhong et al. *Langmuir*, 2018, **34**, 15259-15267.
- 5. J. Feng et al. Chem. Eng. J., 2020, 388, 124283.
- 6. L. Wang et al. J. Colloid Interf. Sci., 2021, 581, 545–551.
- 7. M. Cao et al. Small, 2015, 11, 4379-4384.
- 8. Jonathan B. Boreyko et al. ACS Appl. Mater. Interfaces 2020, 12, 48124–48132.
- 9. Yongmei Zheng et al. ACS Appl. Mater. Interfaces 2020, 12, 5065-5072.
- 10. Shaohai Fu et al. ACS Appl. Mater. Interfaces 2020, 12, 50113-50125.
- 11. John H. Xin et al. ACS Appl. Mater. Interfaces 2016, 8, 2950–2960.
- 12. Liqiu Wang et al. Chem. Eng. J., 2021, 415, 128944.
- 13. Y. Lai et al. J. Mater. Sci. Technol., 2021, 61, 85-92.
- 14. Urszula Stachewicz et al. Sustain. Mater. Techno., 2020, 25, e00191.

Supplementary Movies:

Movie S1. Capillary force of superhydrophilic yarns;

Movie S2. The rapid preparation process of samples based on fully automatic knitting machines;

Movie S3. Directional droplet transport in wedge-shaped tracks.

Movie S4. The moving behavior of droplets on different wettability samples;

Movie S5. The continuous fog harvesting process of SHL-SHB@TF.