Supporting information

Improving the reducibility of CeO₂/TiO₂ by high-temperature redox treatment: key role of atomically thin CeO₂ surface layers.

Ramón Manzorro, José M. Montes-Monroy, D. Goma, José J. Calvino, José A. Pérez-Omil*, Susana Trasobares.

Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, 11510 Cádiz, Spain

Figure S1. Scheme describing the procedure (gas environment and temperature) applied to the CeO_2/TiO_2 -fresh sample. The first Severe-Reduction Mild-Oxidation (SRMO) gave rise to the CeO_2/TiO_2 -SRMO-1C sample. Subsequent Severe-Reduction Severe Oxidation (SRSO) led to the formation of the CeO_2/TiO_2 -SRSO-2C sample, and finally the posterior SRMO-2 treatment brought the CeO_2/TiO_2 -SRMO-3C sample. All the severe treatments have been accomplished at 850 °C and mild treatments at 500 °C, in H₂/Ar the case of reductions and O₂/He for oxidations.

Figure S2. TPR-TCD profiles corresponding to the TiO_2 -P25 bare sample (black line), superimposed corresponding to the TPR-TCD of the CeO_2/TiO_2 -fresh sample (blue line). Compared to the assynthesized sample, the TiO_2 support shows a minor reduction degree, starting at ~500 °C with an almost constant low profile onwards.

Figure S3. Quantitative TPR-TCD corresponding to the CeO_2/TiO_2 -fresh (black line) and CeO_2/TiO_2 -SRMO-1C (blue line). H₂ consumptions after considering the slight TiO₂ reduction, give rise to 0.29 and 0.16 mmol H₂/g respectively.

Figure S4. CeO_2/TiO_2 structural relationship. (a) Experimental HRTEM image illustrating a couple of small CeO₂ nanoparticles deposited over a TiO₂ anatase particle where the white arrow shows the epitaxial growth of the planes indicated with yellow lines, (200) for CeO₂ along [010] and (11²) for TiO₂ along [111]. (b) CeO₂/TiO₂ atomic models describing the structural relationship: (b1) represent the epitaxy reported in the bibliography taking place from the along the [100] and [110] zone axis in CeO₂ and TiO₂ respectively, meanwhile (b2) depicts the same structural relationship from directions [010] in CeO₂ and [111] in TiO₂, characterized in our present work. (c) Scheme revealing the 90° relationship between the two situations described in atomic models.

Figure S5. Ce₂Ti₂O₇ structure. (a) HREM image corresponding to a Ce₂Ti₂O₇ perovskite oriented in the [121] direction. (b) Digital diffraction pattern extracted from the region marked with a doted box on the Ce₂Ti₂O₇ crystal. (c) Theoretical diffraction pattern for this structure on the [121] direction, showing same reflections that the ones observed on the experimental one, confirming the structure and the zone axis. (d) EELS spectrum acquired over the crystal under study. Quantification through Ti-L_{2,3} and Ce-M_{4,5} edges points out a 1:1 proportion on the Ce:Ti ratio, as expected for the structure Ce₂Ti₂O₇.

Figure S6. Analysis of the ELNES structure. The graph gathers from bottom to top the $Ti-L_{2,3}$ edge of anatase, rutile and Ce-Ti bulk-type mixed oxide phases. As compared to the well-reported anatase and rutile structure, the mixed oxide spectrum does not present a splitting in the e_g series of the L_3 edge, but a single and intense peak instead.

Figure S7. Atomic models corresponding to (111)-CeO₂ planes. (a) Top view of 3 (111)-CeO₂ facets stacks in a conventional ABC arrangement for fluorite. As indicated, the planes (20^2) are separated by 1.91 Å. (b) In contrast, the planes taking place, and therefore, the spacings, in a single (111)-CeO₂ facet are different compared to the ABC stacked structure. For a single (111) layer, the planes observed are 1/3(4^{22}), with larger spacings, 3.31 Å, equivalent to the (100) reflection for the trigonal A-Ce₂O₃ structure. These atomic models consider the 5.41 Å characteristic lattice parameter for CeO₂ bulk.

Figure S8. Summary of the XPS analysis carried out on the CeO_2/TiO_2 -fresh and CeO_2/TiO_2 -SRMO-1C. (a) Survey (0-1400 eV) XPS spectra of the fresh (black line) and SRMO (blue line) samples, where the main peaks corresponding to Ce, Ti, O and C have been labelled. (b) High-resolution spectra of Ce-3d. Red arrows indicate the main contribution of Ce^{3+} , much more evident for the SRMO sample. (c) Ce/Ti and Ce^{3+}/Ce^{4+} molar ratios quantified from XPS spectra. (d) Angle-resolved Ce/Ti molar ratio obtained for different incident angles.

Figure S9. Analysis of the ELNES structure for the CeO_2/TiO_2 -SRSO-2C sample. (a) Representative ADF image illustrating two bright regions with a high content of Ce, as observed in the elemental map (b) built with the Ce-M_{4,5} edge. (c) Ti-L_{2,3} fine structure registered across the red arrow on the ADF image. The ELNES analysis points out that, even though the content of cerium is high, the Ti-L_{2,3} structure remains on its rutile phase. This fact suggests the cerium and titanium are not forming a mixed oxide but instead ceria particles supported on rutile-like titania crystals.

Figure S10. Fluorite-type CeO_2 crystal corresponding to the CeO_2/TiO_2 -SRSO-2C sample. The digital diffraction pattern acquired on the red box presented as an inset on the image, indicates that the particle is oriented along the [011] zone axis.