# **Supporting Information**

## The all-fiber structure covered with two-dimensional conductive MOF

### materials to construct a comfortable, breathable and high-quality self-

#### powered wearable sensor system

Youwei Zhao,<sup>a, b</sup> Ningle Hou,<sup>b</sup> Yifan Wang,<sup>a</sup> Chaochao Fu,<sup>\*b</sup> Xiaoting Li,<sup>\*b</sup> Ling Li,<sup>\*a</sup> Wenming Zhang<sup>\*a</sup>

<sup>a</sup> National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China. <sup>b</sup> National & Local Joint Engineering Research Center of Metrology Instrument and system, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China. **Figure S1 (a)**The photo of individual sensor unit and **(b)**the physical picture of super capacitor. (c)The size of screen-printed electrodes. **(d-e)** The pictures of the electrode of the flexible sensor before and after working 5000 times under a pressure of 60kPa.



**Figure S2** (a) PU fiber with a smooth surface, (b) Optical photo of hand pressure plastic film sealing machine, (c) Flexible sensor array, (d) Flexible sensor array with high breathability. (e-f) Iodine vapor experiment verifies the gas tolerance of the sensor. (g-h) Tolerance test of packaged sensor to large droplets (Before and after the droplets fall for 2h).



**Figure S3** (a) The effect of the CNFNs on the sensitivity, (b) The effect of the Cu-CAT@CNFNs(3h) on the sensitivity, (c) The effect of the Cu-CAT@CNFNs(8h) on the sensitivity.





Figure. S4 The excellent sensitivity and stability pressure sensor system

**Figure S5** (a) The SEM of pure Cu-CAT. (b) The TEM image of Cu-CAT@CNFNs, the mapping of the nanofiber confirmed the uniform distribution of C, N and Cu in the Cu-CAT@CNFNs nanolayer. (d) the EDS of the Cu-CAT@CNFNs.





## (d) the EDS of the Cu-CAT@CNFNs





Figure S6 the stress-strain curve of the pressure sensor.



Figure S7 Analyze the working principle of the sensor from the microstructure.

**Figure S8** (a-c) CVs of carbon cloth, Cu-CAT-NWAs/CC-4h, Cu-CAT-NWAs/CC-12h white at different sweep speeds. (d) EIS of pure carbon cloth. (e-f) Galvanostatic charge and discharge curves at different current densities. (g-i) SEM images of the pure CC, Cu-CAT-NWAs/CC-4h, Cu-CAT-NWAs/CC-12h.



Figure. S9



R1 is the equivalent ohmic resistance, including resistance of the electrolyte and the internal resistance of the electrode. R2 is charge transfer resistance, Wo is the finitelength Warburg diffusion element, C1 is electrical double-layer capacitance, and CP is the pseudocapacitance.



Figure S10 The detailed distribution of the interdigital electrodes and the sensor array

| Thickness of PU | Thickness of | Thickness of     | Weight of               |
|-----------------|--------------|------------------|-------------------------|
|                 | CNFNs@Cu-CAT | Silver electrode | Flexible pressure       |
|                 |              |                  | sensor                  |
|                 |              |                  | (Per cm <sup>-2</sup> ) |
| 0.13 mm         | 0.50 cm      | 5.00 µm          | 0.28 g                  |

Table S1 The physical parameters of pressure sensor

| Thickness of | Thickness of | Thickness of   | Weight                  | of |
|--------------|--------------|----------------|-------------------------|----|
| CC@Cu-CAT    | PVA/KCl      | Supercapacitor | Supercapacitor          |    |
|              |              |                | (Per cm <sup>-2</sup> ) |    |
| 0.2160mm     | 3.00mm       | 3.50mm         | 0.42g                   |    |

 Table S2 The physical parameters of supercapacitor

|           | physical par |         | ai puileis |       |           |        |
|-----------|--------------|---------|------------|-------|-----------|--------|
| Operating | Working      | Short   | Length     | Width | Thickness | Weight |
| Voltage   | current      | circuit |            |       |           |        |
|           |              | current |            |       |           |        |
| 2V        | 0-200mA      | 220mA   | 200mm      | 30mm  | 0.5mm     | About  |
|           |              |         |            |       |           | 10g    |

 Table S3 The physical parameters of solar panels

Table S4

| Sensing Material                | Range of       | Sensitivity              | cycles         | Breathability |
|---------------------------------|----------------|--------------------------|----------------|---------------|
|                                 | Detection (Pa) | (Kpa <sup>-1</sup> )     |                | Softness      |
| Polydimethylsiloxan             | 35 to 690 kPa  | factors of               | 1000           | No/Yes        |
| e (PDMS)/carbon                 |                | 18.3 and                 |                |               |
| nanofiber (CNF) <sup>1</sup>    |                | 6.3                      |                |               |
| 3D carbon nanofiber             | 0–0.25 kPa     | 1.41 kPa <sup>-1</sup>   | 0.38 kPa for   | No/Yes        |
| networks (CNFNs) <sup>2</sup>   |                |                          | 5000           |               |
| Copper 7,7,8,8-                 | 0-1.5KPa       | 6.25 kPa <sup>-1</sup>   | 500 Pa for     | No/Yes        |
| tetracyanop-                    |                |                          | 10000          |               |
| quinodimethane                  |                |                          |                |               |
| (CuTCNQ) <sup>3</sup>           |                |                          |                |               |
| MXene/cotton fabric             | 0-1.30 kPa     | 5.30 kPa <sup>-1</sup>   |                | Yes/Yes       |
| (MCF) <sup>4</sup>              |                |                          |                |               |
| All paper-based <sup>5</sup>    | 0.03-30.2 kPa  | 1.5 kPa <sup>-1</sup>    |                | Yes/Yes       |
| Cotton cellulose-               | 0 - 20 kPa     | 0.0197 kPa <sup>-1</sup> | 100 cyclic     | Yes/Yes       |
| incorporated multi-             |                |                          | compressive    |               |
| walled carbon                   |                |                          | tests          |               |
| nanotubes                       |                |                          | (e=70%).       |               |
| (MWCNTs) <sup>6</sup>           |                |                          |                |               |
| Nano Carbon Black-              | 0–15 kPa       | 31.63 kPa <sup>-1</sup>  | 15 kPa for     | No/Yes        |
| Based <sup>7</sup>              |                |                          | 1500           |               |
| 3D carbon aerogels <sup>8</sup> | 50Pa-10kPa     | 114.6kPa <sup>-1</sup>   | 10 000 cycles, | No/Yes        |
| blending carbon                 |                |                          | 3000 bending   | No/Yes        |
| black (CB) with                 |                |                          | cycles at a    |               |
| polydimethylsiloxan             |                |                          | strain of      |               |
| e (PDMS) and                    |                |                          | about 5%       |               |
| Ecoflex <sup>9</sup>            |                |                          |                |               |
| thermoplastic                   | 0–60 kPa       | 0.14 kPa <sup>-1</sup>   | 20 kPa for     | Yes/Yes       |
| polyurethane/carbon             |                |                          | 120000         |               |
| nanofibers <sup>10</sup>        |                |                          |                |               |
| This work                       | 0-60kPa        | 30.10 kPa <sup>-1</sup>  | 5000           | Yes/Yes       |
|                                 |                |                          |                |               |

- 1. S. A. Chowdhury, M. C. Saha, S. Patterson, T. Robison and Y. Liu, *Advanced Materials Technologies*, 2019, **4**, 1800398.
- Z. Han, Z. Cheng, Y. Chen, B. Li, Z. Liang, H. Li, Y. Ma and X. Feng, Nanoscale, 2019, 11, 5942-5950.
- 3. X. Fu, H. Dong, Y. Zhen and W. Hu, *Small*, 2015, **11**, 3351-3356.
- Y. Zheng, R. Yin, Y. Zhao, H. Liu, D. Zhang, X. Shi, B. Zhang, C. Liu and C. Shen, *Chemical Engineering Journal*, 2021, 420, 127720.
- 5. L. Gao, C. Zhu, L. Li, C. Zhang, J. Liu, H. D. Yu and W. Huang, *ACS Appl Mater Interfaces*, 2019, **11**, 25034-25042.
- L. Zhao, F. Qiang, S. W. Dai, S. C. Shen, Y. Z. Huang, N. J. Huang, G. D.
   Zhang, L. Z. Guan, J. F. Gao, Y. H. Song and L. C. Tang, *Nanoscale*, 2019, 11, 10229-10238.
- J. Hu, J. Yu, Y. Li, X. Liao, X. Yan and L. Li, *Nanomaterials (Basel)*, 2020, 10, 664.
- H. Zhuo, Y. Hu, Z. Chen, X. Peng, L. Liu, Q. Luo, J. Yi, C. Liu and L. Zhong, *Journal of Materials Chemistry A*, 2019, 7, 8092-8100.
- 9. M. Li, S. Chen, B. Fan, B. Wu and X. Guo, *Advanced Functional Materials*, 2020, **30**, 2003214.
- 10. Y. Yin, Y. Wang, H. Li, J. Xu, C. Zhang, X. Li, J. Cao, H. Feng and G. Zhu, *Chemical Engineering Journal*, 2021, 133158.