Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Journal of Materials Chemistry A 2021

Electronic Supplementary Information (ESI)

Energetic alkylnitramines-functionalized pentanitro hexaazaisowurtzitanes: towards advanced less sensitive CL-20 analogs

Vladimir V. Parakhin,* Galina V. Pokhvisneva, Tatiana V. Ternikova, Sergei V. Nikitin, Gennady A. Smirnov, Tatiana S. Kon'kova, David B. Lempert and Alla N. Pivkina

Contents

Experimental Section	S5–S11
General methods	S5
Synthesis of compounds 7–14	S6–S11
Spectra of compounds 7-14	S12–S65
¹ H NMR (300.1 MHz, [D ₆]acetone) spectrum of compound 7	S12
¹³ C NMR (75.5 MHz, [D ₆]acetone) spectrum of compound 7	S13
¹⁴ N NMR (21.7 MHz, [D ₆]acetone) spectrum of compound 7	S14
IR (KBr) spectrum of compound 7	S15
HRMS (ESI) of compound 7	S16
¹ H NMR (300.1 MHz, [D ₆]acetone) spectrum of compound 8	S17
¹³ C NMR (75.5 MHz, [D ₆]acetone) spectrum of compound 8	S18
¹⁴ N NMR (21.7 MHz, [D ₆]acetone) spectrum of compound 8	S19
IR (KBr) spectrum of compound 8	S20
¹ H NMR (300.1 MHz, [D ₆]acetone) spectrum of compound 9	S21
¹³ C NMR (75.5 MHz, [D ₆]acetone) spectrum of compound 9	S22
¹⁴ N NMR (21.7 MHz, [D ₆]acetone) spectrum of compound 9	S23
IR (KBr) spectrum of compound 9	S24
HRMS (ESI) of compound 9	S25
¹ H NMR (600.13 MHz, [D ₆]acetone) spectrum of compound 10	S26
¹³ C NMR (150.9 MHz, [D ₆]acetone) spectrum of compound 10	S27
{ ¹ H- ¹³ C} HSQC NMR (600.13 MHz, [D ₆]acetone) spectrum of compound 10	S28
{ ¹ H- ¹³ C} HMBC NMR (600.13 MHz, [D ₆]acetone) spectrum of compound 10	S29
¹⁴ N NMR (43.37 MHz, [D ₆]acetone) spectrum of compound 10	S30
¹⁵ N [INVGATED] NMR (60.3 MHz, [D ₆]acetone) spectrum of compound 10	S31

IR (KBr) spectrum of compound 10	S32
HRMS (ESI) of compound 10	S33
¹ H NMR (600.13 MHz, [D ₆]acetone) spectrum of compound 11	S34
¹³ C NMR (150.9 MHz, [D ₆]acetone) spectrum of compound 11	S35
{ ¹ H- ¹³ C} HSQC NMR (600.13 MHz, [D ₆]acetone) spectrum of compound 11	S36
{ ¹ H– ¹³ C} HMBC NMR (600.13 MHz, [D ₆]acetone) spectrum of compound 11	S37
¹⁴ N NMR (43.37 MHz, [D ₆]acetone) spectrum of compound 11	S38
¹⁵ N [INVGATED] NMR (60.3 MHz, [D ₆]acetone) spectrum of compound 11	S39
{ ¹ H– ¹⁵ C} HSQC NMR (600.13 MHz, [D ₆]acetone) spectrum of compound 11	S40
IR (KBr) spectrum of compound 11	S41
HRMS (ESI) of compound 11	S42
¹ H NMR (600.13 MHz, [D ₆]acetone) spectrum of compound 12	S43
¹³ C NMR (150.9 MHz, [D ₆]acetone) spectrum of compound 12	S44
${}^{1}H{}^{-13}C$ HSQC NMR (600.13 MHz, [D ₆]acetone) spectrum of compound 12	S45
{ ¹ H– ¹³ C} HMBC NMR (600.13 MHz, [D ₆]acetone) spectrum of compound 12	S46
¹⁴ N NMR (43.37 MHz, [D ₆]acetone) spectrum of compound 12	S47
¹⁵ N [INVGATED] NMR (60.3 MHz, [D ₆]acetone) spectrum of compound 12	S48
IR (KBr) spectrum of compound 12	S49
HRMS (ESI) of compound 12	S50
¹ H NMR (600.13 MHz, [D ₆]acetone) spectrum of compound 13	S51
¹³ C NMR (150.9 MHz, [D ₆]acetone) spectrum of compound 13	S52
${^{1}H-^{13}C}$ HSQC NMR (600.13 MHz, [D ₆]acetone) spectrum of compound 13	S53
${}^{1}H{}^{-13}C$ HMBC NMR (600.13 MHz, [D ₆]acetone) spectrum of compound 13	S54
¹⁴ N NMR (43.37 MHz, [D ₆]acetone) spectrum of compound 13	S55
¹⁵ N [INVGATED] NMR (60.3 MHz, [D ₆]acetone) spectrum of compound 13	S56

IR (KBr) spectrum of compound 13	S57
HRMS (ESI) of compound 13	S58
¹ H NMR (600.13 MHz, [D ₆]acetone) spectrum of compound 14	S59
¹³ C NMR (150.9 MHz, [D ₆]acetone) spectrum of compound 14	S60
{ ¹ H– ¹³ C} HSQC NMR (600.13 MHz, [D ₆]acetone) spectrum of compound 14	S61
{ ¹ H- ¹³ C} HMBC NMR (600.13 MHz, [D ₆]acetone) spectrum of compound 14	S62
¹⁴ N NMR (43.37 MHz, [D ₆]acetone) spectrum of compound 14	S63
¹⁵ N [INVGATED] NMR (60.3 MHz, [D ₆]acetone) spectrum of compound 14	S64
IR (KBr) spectrum of compound 14	S65
Analysis of spectral characteristics of nitramines 7–14	S66–S68
Table of assigned ¹ H, ¹³ C{ ¹ H}, and ¹⁴ N NMR shifts [ppm] of nitramines 7–14 in [D ₆]acetone	S66
Table of assigned $^{15}N{^1H}$ NMR shifts [ppm] of nitramines 10–14 in [D ₆]acetone	S67
Table of assigned IR vibrations [cm ⁻¹] of nitramines 7–14 in KBr	S67
Description of the spectra of nitramines 7–10	S68
X-ray crystal structure determination	S69–S82
Single crystal X-ray diffraction of compound 10	S69
Single crystal X-ray diffraction of compound 11	S73
Single crystal X-ray diffraction of compound 12	S77
Single crystal X-ray diffraction of compound 14·2MeCN	S81
Molecular electrostatic surface potentials (ESPs) for 10, 12, and 14	S86–87
Combustion calorimetry measurements of compounds 10–14	S88–90
High-temperature chemical equilibria thermodynamic calculations for compounds 10–14	S91–93
Explosive performance of compounds 8–14	S94
References	S95

Experimental Section

General methods

Analytical thin-layer chromatography (TLC) was carried out on Silufol UV-254 silica gel and Merck 60 F254 silica gel aluminum sheets. Merck 60 (15–40 µm) silica gel was used for preparative column and thin-layer chromatography. Melting points were determined with a Boethius Kofler melting point apparatus (heat rate 5 °C·min⁻¹). ¹H, ¹³C and ¹⁴N NMR spectra of compounds **7–9** were recorded using a 300 MHz (Bruker AM300) nuclear magnetic resonance spectrometer operating at 300.1, 75.5 and 30.4, respectively. ¹H, ¹³C{¹H}, ¹⁴N and ¹⁵N{¹H} NMR spectra of compounds **10–14** were recorded using a 600 MHz (Bruker AV600) nuclear magnetic resonance spectrometer operating at 600.13, 150.9, 43.37 and 60.8 MHz, respectively. Acetone-d₆ was employed as NMR solvent. Chemical shifts in the ¹H, ¹³C, ¹⁴N and ¹⁵N spectra are reported in delta (δ) units, parts per million (ppm), relative to the internal standard Me₄Si (TMS) (¹H, ¹³C – positive values correspond to downfield chemical shifts) and external standard MeNO₂ (¹⁴N, ¹⁵N – negative values correspond to upfield shifts). The values of the spectral parameters J and $\Delta v_{1/2}$ are given in Hz. IR spectra were recorded on a Bruker ALPHA-T spectrometer in the range from 4000 to 400 cm⁻¹ (resolution 2) cm⁻¹) using KBr pellets. High-resolution mass spectra (HRMS) were recorded by electrospray ionization (ESI) with a Bruker micrOTOF II instrument. Elemental analyses were carried out on Perkin Elmer 2400 elemental analyzer. The powders densities were measured at ~30 °C using a Micromeritics AccuPyc 1340 V2.01 helium pycnometer. All reagents were purchased from Acros and Sigma-Aldrich. Solvents were purified before use according to the standard procedures.¹ Thermochemical measurements were carried out on a precision automatic combustion calorimeter with an isothermal coating specifically developed for combustion of energetic compounds.² Thermal stability was studied on a DSC 204 HP (Netzsch) high-sensitive instrument A sample with a mass of ~0.5 mg was placed into capped aluminum crucibles with cracked lids and heated at a linear rate of 5 °C·min⁻¹ to 300 °C under a nitrogen flow of 100 mL·min⁻¹. Sensitivity toward impact and friction was measured on a BAM devices using STANAG^{3, 4} standards in sets of 30 experiments. All other reagents were used without further purification. The starting 2,6,8,10,12pentanitrohexaazaisowurtzitane (1) was prepared according to previously reported procedures of A. J. Bellamy⁵ by mono-trifluoroacetylation of 2,6,8,12tetraacetylhexaazaisowurtzitane (TADA) with TFAA/TFA, followed by nitrolysis of the

N-acetyl groups using HNO₃/30% oleum and removal of the *N*-trifluoroacetyl protecting group by solvolysis with EtOH in ~40% total yield on 3 steps, dec >165 °C; ¹H NMR (300.1 MHz): δ 6.00 (broad s, 1H, NH), 6.70–6.73 (m, 2H, 2CH), 7.91 (s, 2H, 2CH), 7.97 (d, $J_{H,H}$ = 8 Hz, 2H, 2CH), these and other physicochemical parameters of **1** are in agreement with the data given in the literature. Used nitrouretane^{6, 7} and ethylenedinitramine⁸ were prepared according to the corresponding reported procedures.

Syntheses

Caution: Although there is no danger in treating these substances, manipulations with such high-energy materials must be carried out by using standard safety precautions. All compounds should be handled with extreme care.

nitro[(2,6,8,10,12-pentanitro-2,4,6,8,10,12-hexaazaisowurtzitan-4-Ethyl yl)methyl]carbamate (7). A suspension of 1 (2.00 g, 5.09 mmol) and paraformaldehyde (1.20 g, 40.1 mmol) in AcCl (39.6 mL, 560 mmol) was stirred at 20 °C for 24 h, and then the excess AcCl was removed in vacuo. To the residue, dry MeCN (13.0 mL) was added, then a solution of nitrourethane (0.800 g, 5.97 mmol) and Et₃N (0.840 mL, 6.03 mmol) in dry MeCN (5.0 mL) were added dropwise. The reaction mixture was stirred at 20 °C for 2 h and then was poured into water (100 mL). The precipitate formed was filtered off, washed with water (100 mL) and air-dried. The resulting solid can be further purified by preparative chromatography (elution with ethyl acetate-hexane, 1:2). Compound 7 (2.71 g, yield: 99%) was isolated as a colorless powder, mp 190–192 °C (dec.). ¹H NMR (300.1 MHz): δ 1.37 (t, J_{H,H} = 7 Hz, 3 H, Me), 4.40 (k, J_{H,H} = 7 Hz, 2 H, OCH₂), 5.75 (s, 2 H, N^{cage}CH₂), 7.08 and 7.97 (d, J_{H,H} = 8 Hz, 2 H, CH), 8.02 (s, 2 H, CH) ppm. ¹³C NMR (75.5 MHz): δ 14.3 (Me), 65.9 (OCH₂), 150.3 (C=O), 66.0 (N^{cage}CH₂), 71.7, 74.5 and 77.8 (CH) ppm. ¹⁴N NMR (30.4 MHz): δ – 46 ($\Delta v_{1/2}$ = 80 Hz, NNO₂^{chain}), -41 ($\Delta v_{1/2}$ = 120 Hz) and -40 ($\Delta v_{1/2}$ = 106 Hz) (NNO₂^{cage}) ppm. IR (KBr): v^{\sim} 3061 (m) (CH₂/Me), 1774 (s) (C=O), 1601 (vs), 1579 (vs) and 1546 (m) (asymm. NNO₂^{cage}), 1529 (m) (asymm. NNO₂^{chain}), 1331 (s), 1289 (s) and 1269 (vs) (symm. NNO₂) cm⁻¹. HRMS (ESI): *m*/z calcd for [C₁₀H₁₃N₁₃O₁₄ + Na⁺]: 562.0597; found $[M + Na]^+$: 562.0609.

N-[(2,6,8,10,12-pentanitro-2,4,6,8,10,12-hexaazaisowurtzitan-4-

yl)methyl]nitramide (8). A suspension of 7 (2.71 g, 4.21 mmol) in AcOEt (30.0 mL) was

saturated with gaseous ammonia, the reaction mixture was stirred at 20 °C for ~0.5 h until **7** disappeared by TLC (eluent, ethyl acetate—hexane, 1:2) and the solvent was removed *in vacuo*. To the residue, water (10 mL) was added, the precipitate formed was filtered off, washed with water (10 mL) and air-dried. Compound **8** (1.81 g, yield: 77%) was isolated as a colorless powder, dec. (observed on Kofler's table, 5 °C·min⁻¹): 195 °C. Density (pycnometer, 30 °C): 1.901 g·cm⁻³. ¹H NMR (300.1 MHz): δ 5.06 (s, 2 H, N^{cage}CH₂), 6.69 and 7.95 (d, J_{H,H} = 8 Hz, 2 H, CH), 8.03 (s, 2 H, CH) ppm. ¹³C NMR (75.5 MHz): δ 62.7 (N^{cage}CH₂), 71.3, 74.4 and 77.5 (CH) ppm. ¹⁴N NMR (30.4 MHz): δ – 41 ($\Delta v_{1/2}$ = 93 Hz) and –39 ($\Delta v_{1/2}$ = 106 Hz) (NNO₂^{cage}), –30 ($\Delta v_{1/2}$ = 60 Hz, NNO₂^{chain}) ppm. IR (KBr): v^{\sim} 3297 (m) (NH), 3044 (m) (CH₂), 1608 (s), 1590 (vs) and 1553 (s) (asymm. NNO₂^{cage}), 1339 (s), 1280 (vs) and 1261 (vs) (symm. NNO₂) cm⁻¹. Elemental analysis for C₇H₉N₁₃O₁₂ (467.23): calcd C, 17.99; H, 1.94; N, 38.97 %; found C, 18.29; H, 2.00; N, 38.64 %.

N-[2-(nitramino)ethyl]-N-[(2,6,8,10,12-pentanitro-2,4,6,8,10,12-

hexaazaisowurtzitan-4-yl)methyl]nitramide (9). A suspension of 1 (0.500 g, 1.27 mmol) and paraformaldehyde (0.300 g, 10.0 mmol) in AcCl (9.90 mL, 140 mmol) was stirred at 20 °C for 24 h, and the excess AcCl was removed in vacuo. To the residue, dry MeCN (8.0 mL) was added, the resulting suspension was added in portions to the solution of EDNA (0.250 g, 1.67 mmol) and Et₃N (0.25 mL, 1.80 mmol) in dry MeCN (8.0 mL). The reaction mixture was stirred at 20 °C for 3 h, and then was poured into water (30 mL). The precipitate of 9 (0.400 g, yield: 57%) was filtered off, washed with water (30 mL) and air-dried. An additional amount of 9 (0.170 g, yield: 24%) was isolated by extraction of the mother liquor with AcOEt (3×20 mL), followed by drying the extract over MgSO₄ and evaporating the solvent in vacuo. The resulting product can be further purified by preparative chromatography (elution with ethyl acetatehexane, 1:1). In total, compound 9 (0.570 g, yield: 81%) was obtained as a colorless powder, dec. (observed on Kofler's table, 5 °C·min⁻¹): 208 °C. Density (pycnometer, 30 °C): 1.869 g·cm⁻³. ¹H NMR (300.1 MHz): δ 3.94 and 4.25 (t, $J_{H,H}$ = 6 Hz, 2 H, CH₂^{chain}), 5.39 (s, 2 H, N^{cage}CH₂), 7.01 and 7.97 (d, J_{H,H} = 8 Hz, 2 H, CH), 8.06 (s, 2 H, CH), 10.87 (br s, 2 H, NH) ppm. ¹³C NMR (75.5 MHz): δ 43.8 and 50.1 (CH₂^{chain}), 68.5 (N^{cage}CH₂), 71.5, 74.4 and 77.6 (CH) ppm. ¹⁴N NMR (30.4 MHz): δ –41 ($\Delta v_{1/2}$ = 106 Hz) and –39 $(\Delta v_{1/2} = 106 \text{ Hz}) (\text{NNO}_2^{\text{cage}}), -31 \Delta v_{1/2} = 80 \text{ Hz}) \text{ and } -28 (\Delta v_{1/2} = 47 \text{ Hz}) (\text{NNO}_2^{\text{chain}}) \text{ ppm}.$ IR (KBr): v^{\sim} 3327 (m) (NH), 3037 (m) (CH₂), 1619 (vs), 1592 (vs) and 1574 (vs) (asymm. NNO₂^{cage}), 1520 (m) (asymm. NNO₂^{chain}), 1336 (s), 1274 (vs) and 1258 (vs) (symm.

NNO₂) cm⁻¹. HRMS (ESI): *m/z* calcd for [C₉H₁₃N₁₅O₁₄ + Na⁺]: 578.0659; found [*M* + Na]⁺: 578.0663.

N-methyl-N-[(2,6,8,10,12-pentanitro-2,4,6,8,10,12-hexaazaisowurtzitan-4-

yl)methyl]nitramide (10). To a solution of 8 (0.400 g, 0.857 mmol) in dry MeCN (8.0 mL) Et₃N (0.14 mL, 1.01 mmol) and MeI (0.2 mL, 3.23 mmol) were added. The reaction mixture was stirred at 20 °C for 5 days and then was diluted with water (100 mL). The product was extracted with AcOEt (3×10 mL), the extract was sequentially washed with brine (10 мл), 10% aqueous solution of Na₂SO₃ (10 мл) and water (10 mL). After drying the extract over MgSO₄, and evaporating of the solvent in vacuo, **10** was isolated from the residue by preparative TLC (elution with benzene–acetone, 7:1). The crude product was further purified by boiling in EtOH for 5 min, followed by washing with small amount of EtOH, Et₂O and drying in vacuo. Compound **10** (0.206 g, yield: 50%) was obtained as a colorless powder. Density (XRD, 25 °C): 1.860 g·cm⁻³. Density (pycnometer, 31 °C): 1.848 g·cm⁻³. DSC (5 °C·min⁻¹): onset 222 °C, max 226 °C. Sensitivities: IS = 6.1 J; FS = 180 N. ¹H NMR (600.13 MHz): δ 3.52 (s, 3 H, Me), 5.35 (s, 2 H, N^{cage}CH₂), 6.99 and 7.99 (d, $J_{H,H}$ = 7 Hz, 2 H, CH), 8.05 (s, 2 H, CH) ppm. ¹³C{¹H} NMR (150.9 MHz): δ 38.9 (Me), 68.7 (N^{cage}CH₂), 71.2, 74.2 and 77.3 (CH) ppm. ¹⁴N NMR (43.37 MHz): δ –41 ($\Delta v_{1/2}$ = 102 Hz) and –38 ($\Delta v_{1/2}$ = 97 Hz) (NNO₂^{cage}), –29 ($\Delta v_{1/2}$ = 34 Hz, NNO₂^{chain}) ppm. ¹⁵N NMR ([INVGATED], 60.8 MHz): δ –320.7 (N^{cage}CH₂), – 203.3 (NNO₂^{chain}), -199.5, -180.8 and -177.7 (N^{cage}NO₂), -40.7, -39.9 and -37.3 (NNO₂^{cage}), –28.6 (NNO₂^{chain}) ppm. IR (KBr): v[~] 3051 (m) and 3033 (m) (CH₂/Me), 1610 (s), 1589 (vs) and 1560 (s) (asymm. NNO2^{cage}), 1522 (s) (asymm. NNO2^{chain}), 1340 (s), 1295 (vs) and 1272 (vs) (symm. NNO₂) cm⁻¹. HRMS (ESI): m/z calcd for [C₈H₁₁N₁₃O₁₂ -H⁺]: 480.0577; found [*M* − H][−]: 580.0567.

N-[2-(methylnitramino)ethyl]-N-[(2,6,8,10,12-pentanitro-2,4,6,8,10,12-

hexaazaisowurtzitan-4-yl)methyl]nitramide (11). To a solution of **9** (0.100 g, 0.180 mmol) in dry MeCN (5.0 mL) was added Et₃N (0.03 mL, 0.216 mmol) and MeI (0.02 mL, 0.323 mmol). The reaction mixture was stirred at 20 °C for 5 days, and then was diluted with water (100 mL). The product was extracted with AcOEt (3×5 mL), the extract was sequentially washed with brine (5 мл), 10% aqueous solution of Na₂SO₃ (5 мл) and water (5 mL). After drying the extract over MgSO₄ and evaporating of the solvent *in vacuo*, compound **11** (0.023 g, yield: 22%) was isolated from the residue by preparative TLC (elution with benzene–acetone, 7:1) as a colorless crystals, dec.. (observed on Kofler's table, 5 °C·min⁻¹): 197°C. Density (pycnometer, 31 °C): 1.822 g·cm⁻³. ¹H NMR (600.13 MHz): δ 3.45 (s, 3 H, Me), 4.24 and 4.32 (t, *J*_{H,H} = 5 Hz, 2 H,

CH₂^{chain}), 5.40 (s, 2 H, N^{cage}CH₂), 7.00 and 7.98 (d, $J_{H,H} = 8$ Hz, 2 H, CH), 8.06 (s, 2 H, CH) ppm. ¹³C{¹H} NMR (150.9 MHz): δ 39.6 (Me), 49.4 and 51.1 (CH₂^{chain}), 68.4 (N^{cage}CH₂), 71.4, 74.4 and 77.5 (CH) ppm. ¹⁴N NMR (43.37 MHz): δ –41 and –38 ($\Delta v_{1/2} = 128$ Hz, NNO₂^{cage}), -30 ($\Delta v_{1/2} = 62$ Hz) and -28 ($\Delta v_{1/2} = 26$ Hz) (NNO₂^{chain}) ppm. ¹⁵N NMR ([INVGATED], 60.8 MHz): δ –320.0 (N^{cage} CH₂), -210.5 (N^{chain} NO₂), -199.3 (N^{cage} NO₂), -196.5 (N^{chain} NO₂), -180.4 and -177.6 (NNO₂^{cage}), -40.8, -39.9 and -37.4 (NNO₂^{cage}), -30.2 and -27.3 (NNO₂^{chain}) ppm. IR (KBr): v^{\sim} 3040 (m) (CH₂/Me), 1607 (s), 1587 (vs) (asymm. NNO₂^{cage}), 1540 (s) and 1510 (s) (asymm. NNO₂^{chain}), 1331 (s), 1282 (vs) and 1260 (vs) (symm. NNO₂) cm⁻¹. HRMS (ESI): m/z calcd for [C_{10} H₁₅N₁₅O₁₄ + Na⁺]: 592.0815; found [M + Na]⁺: 592.0814.

2-nitro-1-{[(2,6,8,10,12-pentanitro-2,4,6,8,10,12-hexaazaisowurtzitan-4-

yl)methyl](nitramino)methyl}guanidine (12). A suspension of 1-hydroxymethyl-2nitroguanidine (0.500 g, 3.73 mmol) and $SOCI_2$ (2.8 mL, 38.6 mmol) in dry CH_2CI_2 (10.0 mL) was stirred at 20 °C for 24 h, then the precipitate was filtered off, washed with dry CH₂Cl₂ (10 mL) and dried *in vacuo*. The resulting solid was added in portions to the solution of 8 (1.40 g, 3.00 mmol) and Et₃N (0.55 mL, 3.96 mmol) in dry MeCN (10.0 mL). The reaction mixture was stirred at 20 °C for 1.5 h, and then, under stirring, was poured into water (100 mL). The precipitate formed was filtered off, washed with water (100 mL) and air-dried. Compound 12 was isolated from the solid mixture by preparative TLC (elution with ethyl acetate-hexane, 1:1). The product was further purified by reprecipitation with water from a solution of compound 8 in MeCN. Compound 12 (0.876 g, yield: 50%) was obtained as a colorless powder. Density (XRD, 25 °C): 1.860 g·cm⁻³. Density (pycnometer, 32 °C): 1.846 g·cm⁻³. DSC (5 °C·min⁻¹): onset 203 °C, max 215 °C. Sensitivities: IS = 4.3 J; FS = 180 N. ¹H NMR (600.13 MHz): δ 5.27 (d, $J_{H,H}$ = 6 Hz, 2 H, CH_2^{chain}), 5.54 (s, 2 H, $N^{cage}CH_2$), 7.20 (d, $J_{H,H}$ = 8 Hz, 2 H, CH), 7.51 (br t, $J_{H,H}$ = 5 Hz, 1 H, NH), 7.93 (d, $J_{H,H}$ = 8 Hz, 2 H, CH), 8.01 (s, 2 H, CH) ppm. ¹³C{¹H} NMR (150.9 MHz): δ 55.7 (CH₂^{chain}), 68.0 (N^{cage}CH₂), 71.3, 74.4 and 77.2 (CH), 160.2 (C=NNO₂) ppm. ¹⁴N NMR (43.37 MHz): δ –135 ($\Delta v_{1/2}$ = 80 Hz, C=N–NO₂), –41 $(\Delta v_{1/2} = 121 \text{ Hz})$ and $-38 (\Delta v_{1/2} = 140 \text{ Hz}) (NNO_2^{\text{cage}}), -31 (\Delta v_{1/2} = 85 \text{ Hz}, NNO_2^{\text{chain}}), -$ 14 ($\Delta v_{1/2}$ = 87 Hz, C=N–NO₂) ppm. ¹⁵N NMR ([INVGATED], 60.8 MHz): δ –321.3 (N^{cage}CH₂), -298.9 (NH₂), -294.8 (NH), -199.0 (N^{cage}NO₂), -184.6 (N^{chain}NO₂), -181.6 and -178.5 (N^{cage}NO₂), -40.5, -40.0 and -37.5 (NNO₂^{cage}), -30.4 (NNO₂^{chain}), -13.1 (C=NNO₂) ppm. IR (KBr): v^{\sim} 3464 (m) and 3423 (s) (NH₂), 3358 (m) (NH), 3044 (m) (CH₂), 1643 (s) (C=N), 1596 (vs) (asymm. NNO₂^{cage}), 1532 (m) (asymm. NNO₂^{chain}), 1449 (m) (asymm. C=N–NO₂), 1308 (s) (symm. C=N–NO₂), 1330 (s), 1283 (s) and 1261 (vs)

(symm. NNO₂^{cage}) cm⁻¹. HRMS (ESI): *m*/*z* calcd for [C₉H₁₃N₁₇O₁₄ + H⁺]: 584.0901; found [*M* + H]⁺: 584.0890.

2-nitro-1-{[(2,6,8,10,12-pentanitro-2,4,6,8,10,12-hexaazaisowurtzitan-4-

yl)methyl(2-(nitramino)ethyl)](nitramino)methyl}guanidine (13). A suspension of 1hydroxymethyl-2-nitroguanidine (0.100 g, 0.746 mmol) and SOCl₂ (0.56 mL, 7.72 mmol) in dry CH₂Cl₂ (2.0 mL) was stirred at 20 °C for 24 h, then the precipitate was filtered off, washed with dry CH₂Cl₂ (2 mL) and dried in vacuo. The resulting solid was added in portions to the solution of 9 (0.200 g, 0.360 mmol) and Et₃N (0.06 mL, 0.432 mmol) in dry MeCN (10.0 mL). The reaction mixture was stirred at 20 °C for 2.5 h, and then, under stirring, was poured into water (50 mL). The precipitate formed was filtered off, washed with water (50 mL) and air-dried. Compound 13 (0.065 g, yield: 27%) was isolated from the solid mixture by preparative TLC (elution with ethyl acetate-hexane, 1:1) as a colorless powder, dec. (observed on Kofler's table, 5 °C·min⁻ ¹): 178 °C. Density (pycnometer, 33 °C): 1.804 g·cm⁻³. ¹H NMR (600.13 MHz): δ 4.36 (s, 4 H, CH₂^{chain}), 5.18 (d, J_{H,H} = 7 Hz, 2 H, CH₂^{chain}), 5.40 (s, 2 H, N^{cage}CH₂), 6.99 (d, J_{H,H} = 8 Hz, 2 H, CH), 7.60 (br s, 1 H, NH), 7.97 (d, J_{H,H} = 8 Hz, 2 H, CH), 8.02 (s, 2 H, CH) ppm. ¹³C{¹H} NMR (150.9 MHz): δ 49.8, 50.4 and 57.7 (CH₂^{chain}), 68.7 (N^{cage}CH₂), 71.3, 74.2 and 77.3 (CH), 160.2 (C=NNO₂) ppm.¹⁴N NMR (43.37 MHz): δ –136 ($\Delta v_{1/2}$ = 111 Hz, C=N-NO₂), -41 ($\Delta v_{1/2}$ = 136 Hz) and -38 ($\Delta v_{1/2}$ = 158 Hz) (NNO₂^{cage}), -30 ($\Delta v_{1/2}$ = 102 Hz, NNO_2^{chain}), -14 ($\Delta v_{1/2}$ = 106 Hz, C=N- NO_2) ppm. ¹⁵N NMR ([INVGATED], 60.8 MHz): δ –320.3 (N^{cage} CH₂), –298.5 (NH₂), –199.1 (N^{cage} NO₂), –195.2 and –193.2 (N^{chain} NO₂),– 180.8 and -177.9 (N^{cage}NO₂), -135.6 (C=NNO₂) -40.6, -39.9 and -37.5 (NNO₂^{cage}), -29.5 and -29.0 (NNO₂^{chain}), -13.2 (C=NNO₂) ppm IR (KBr): v[~] 3435 (m) and 3345 (m) (NH₂ and NH), 3039 (w) (CH₂), 1641 (m) (C=N), 1595 (m) (asymm. NNO₂^{cage}), 1533 (m) (asymm. NNO₂^{chain}), 1455 (m) (asymm. C=N–NO₂), 1330 (m), 1285 (vs) and 1266 (vs) (symm. NNO₂) cm⁻¹.HRMS (ESI): m/z calcd for [C₁₁H₁₇N₁₉O₁₆ + H⁺]: 672.1173; found [*M* + H]⁺: 672.1166.

N,N'-bis[(2,6,8,10,12-pentanitro-2,4,6,8,10,12-hexaazaisowurtzitan-4-

yl)methyl]nitramide (14). A suspension of **1** (0.500 g, 1.27 mmol) and paraformaldehyde (0.300 g, 10.0 mmol) in AcCl (9.90 mL, 140 mmol) was stirred at 20 °C for 24 h, and the excess AcCl was removed *in vacuo*. To the residue, dry MeCN (13.0 mL) was added, the resulting suspension was added in portions to the solution of **8** (0.420 g, 0.899 mmol) and Et₃N (0.14 mL, 1.01 mmol) in dry MeCN (8.0 mL). The reaction mixture was stirred at 20 °C for 3 h, then the solid was filtered off and filtrate was poured into water (30 mL). The precipitate formed was filtered off, washed with

water (100 mL) and air-dried. Compound 14 was isolated from the solid mixture by preparative TLC (elution with ethyl acetate-hexane, 1:1). The crude product was further purified by boiling in *i*-PrOH for 3 h, followed by heating at 70 °C in water for 3 h and drying under heating at 90 °C in vacuo. Compound 14 (0.300 g, yield: 38%) was obtained as a colorless powder. Density (pycnometer, 33 °C): 1.921 g·cm⁻³. DSC (5 °C·min⁻¹): onset 223 °C, max 229 °C. Sensitivities: IS = 8.0 J; FS = 150 N. ¹H NMR (600.13 MHz): δ 5.50 (s, 2 H, N^{cage}CH₂), 7.00 and 7.95 (d, J_{H,H} = 7 Hz, 2 H, CH), 8.07 (s, 2 H, CH) ppm. ¹³C{¹H} NMR (150.9 MHz): δ 67.3 (N^{cage}CH₂), 71.3, 74.5 and 77.4 (CH) ppm. ¹⁴N NMR (43.37 MHz): δ –41 ($\Delta v_{1/2}$ = 192 Hz) (NNO₂^{cage}), –34 ($\Delta v_{1/2}$ = 174 Hz, NNO₂^{chain}) ppm. ¹⁵N NMR ([INVGATED], 60.8 MHz): δ –319.1 (N^{cage}CH₂), –199.6 (N^{cage}NO₂),, -190.2 (NNO₂^{chain}), -180.1 and -177.3 (N^{cage}NO₂), -41.1, -40.0 and -37.1 (NNO₂^{cage}), -33.7 (NNO₂^{chain}) ppm. IR (KBr): v[~] 3040 (m) (CH₂), 1595 (vs),(asymm. NNO₂), 1330 (s), 1284 (vs) and 1264 (vs) (symm. NNO₂) cm⁻¹. Elemental analysis for C₁₄H₁₆N₂₄O₂₂ (872.43): calcd C, 19.27; H, 1.85; N, 38.53 %; found C, 19.44; H, 2.00; N, 38.16 %. Slow crystallization of compound 14 from MeCN-H₂O gave a co-crystal of compound 14 with two molecules of MeCN as a colorless crystals, m.p. 117-122 °C (dec.). Density (X-ray, 25 °C): 1.789 g·cm⁻³. Elemental analysis for C₁₈H₂₂N₂₆O₂₂ (954.53): calcd C, 22.65; H, 2.32; N, 38.15 %; found C, 22.62; H, 1.88; N, 38.09 %.

IR (KBr) spectrum of compound 7

HRMS (ESI) for compound 7

¹⁴N NMR (21.7 MHz, [D₆]acetone) spectrum of compound 8

IR (KBr) spectrum of compound 8

¹⁴N NMR (21.7 MHz, [D₆]acetone) spectrum of compound 9

IR (KBr) spectrum of compound 9

HRMS (ESI) for compound 9

{¹H-¹³C} HSQC NMR (600.13 MHz, [D₆]acetone) spectrum of compound 10

{¹H-¹³C} HMBC NMR (600.13 MHz, [D₆]acetone) spectrum of compound 10

S29

IR (KBr) spectrum of compound 10

HRMS (ESI) for compound 10

{¹H-¹³C} HSQC NMR (600.13 MHz, [D₆]acetone) spectrum of compound 11

{¹H-¹³C} HMBC NMR (600.13 MHz,[D₆]acetone) spectrum of compound 11

¹⁴N NMR (43.37 MHz,[D₆]acetone) spectrum of compound 11

IR (KBr) spectrum of compound 11

HRMS (ESI) for compound 11

¹³C NMR (150.9 MHz,[D₆]acetone) spectrum of compound 12 160.24 77.17 74.36 71.30 68.04 55.73 $\begin{array}{c} 20\\ 20\\ 57\\ 31\\ 44\\ 31\\ \end{array}$ 0.0 22 C1,C6 NO_2 C4,C5 C2,C3 $\begin{array}{c} \mathsf{O}_2\mathsf{N}_{\smallsetminus}\\ \mathsf{O}_2\mathsf{N} \end{array}$ Ν H N NH₂ 9 Ň <u>2</u> N 8 O_2N Ν 12 NO_2 Acetone-d₆ 7 <u>C</u>H₂ $\frac{9}{C}$ = NNO₂ <mark>8</mark> <u>С</u>Н₂ TMS 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

{¹H-¹³C} HSQC NMR (600.13 MHz,[D₆]acetone) spectrum of compound 12

S45

{¹H-¹³C} HMBC NMR (600.13 MHz, [D₆]acetone) spectrum of compound 12

¹⁴N NMR (43.37 MHz,[D₆]acetone) spectrum of compound 12

S48

IR (KBr) spectrum of compound 12

Wavenumber cm-1

HRMS (ESI) for compound 12

{¹H-¹³C} HSQC NMR (600.13 MHz,[D₆]acetone) spectrum of compound 13

{¹H-¹³C} HMBC NMR (600.13 MHz, [D₆]acetone) spectrum of compound 13

S54

S56

IR (KBr) spectrum of compound 13

HRMS (ESI) for compound 13

¹³C NMR (150.9 MHz,[D₆]acetone) spectrum of compound 14 67.33 $\begin{array}{c} 0.08 \\ 3.0 \\ 3.2 \\$ 0.00 77.35 74.52 71.27 30. 29. 29. 29. C4,C5 C1,C6 C2,C3 $N > NO_2$ $N > NO_2$ O_2N N~NO₂ N∕~NO₂ $O_2 N - N O_2 N O_2 N - N O_2 N -$ Ν[^] Ń Ν 2 N Ν 5 NO_2 O_2N 14 $\underline{C}H_2$ Acetone-d₆ TMS 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 ppm

95

{¹H-¹³C} HSQC NMR (600.13 MHz, [D₆]acetone) spectrum of compound 14

S61

{¹H-¹³C} HMBC NMR (600.13 MHz,[D₆]acetone) spectrum of compound 14

¹⁴N NMR (43.37 MHz,[D₆]acetone) spectrum of compound 14

IR (KBr) spectrum of compound 14

Analysis of spectral characteristics of nitramines 7–14

General formula of nitramines 7-14

Table 1 Assigned ¹H, ¹³C{¹H}, and ¹⁴N NMR shifts [ppm] of nitramines **7–14** in acetone-d₆.

Nucleur	Assignment		Compounds Chemical shifts δ, ppm								
INUCIEUS	Part	Groups	7	8	9	10	11	12	13	14	
¹ Н (Ј _{Н,Н} , Нz)		CH ^{1,6}	8.02 s	8.03 s	8.06 s	8.05 s	8.06 s	8.01 s	8.02 s	8.07 s	
	Cage	CH ^{4,5}	7.97 d (8)	7.95 d (8)	7.97 d (8)	7.99 d (7)	7.98 d (8)	7.93 d (8)	7.97 d (8)	7.95 d (7)	
		CH ^{2,3}	7.08 d (8)	6.69 d (8)	7.01 d (8)	6.99 d (7)	7.00 d (8)	7.20 d (8)	6.99 d (8)	7.00 d (7)	
		N ^{Cage} –CH2 ⁷	5.75 s	5.06 s	5.39 s	5.35 s	5.40 s	5.54 s	5.40 s	5.50 s	
		N(NO ₂)–CH ₂ ⁸⁽⁹⁾	-	-	4.25 t (6)	-	4.32 t (5)	5.27 d (6)	5.18 d (7)		
	Chain	CH ₂ ⁹⁽¹⁰⁾	-	-	3.94 t (6)	-	4.24 t (5)	-	4.36 s	_	
		N(NO ₂)–Me	-	-	-	3.52 s	3.45 s	-	-		
		NH	-	n.o.*	10.87 brs	-	-	7.51 brt (5)	7.60 brs		
		OCH ₂ –Me	4.40 k (7) 1.37 t (7)				-				
	Cage	C ^{2,3}	77.8	77.5	77.6	77.3	77.5	77.2	77.3	77.4	
		C ^{1,6}	74.5	74.4	74.4	74.2	74.4	74.4	74.2	74.5	
		C ^{4,5}	71.7	71.3	71.5	71.2	71.4	71.3	71.3	71.3	
	Chain	N ^{Cage} –CH2 ⁷	66.0	62.7	68.5	68.7	68.4	68.0	68.7	67.3	
130(1) 1)		N(NO ₂)–CH ₂ ⁸	-	-	50.1	-	49.4	55.7	49.8		
"U{"H}		CH ₂ ^{9 (10)}	-	-	43.8	-	51.1	-	50.4 ⁹ 57.7 ¹⁰	-	
		N(NO ₂)–Me	-	-	-	38.9	39.6	-	-		
		C=NNO ₂			-			160.2	160.2	-	
		C=O	150.3								
		OCH ₂ –Me	65.9 14.3				-				
¹⁴ N (Δν _{1/2} , Hz)	Cage	Cage N	7,8	-40 (106)	-39 (106)	-39 (106)	-38 (97)	-38 (128)	-38 (140)	-38 (158)	
			NNO ₂ 9–11	-41 (120)	-41 (93)	-41 (106)	-41 (102)	-41 (128)	-41 (121)	-41 (136)	-41 (192)
		NNO ₂ ¹³	-46 (80)	-30 (60)	–31 (80) –28 (47)	-29 (34)	-30 ⁶ (62) -28 ^{6'} (26)	-31 (85)	-30 (102)	-34 (174)	
	Chain	C=N-NO ₂						-14 (87)	-14 (106)		
		C=N–NO ₂			-			-135 (80)	–136 (111)	_	

* Due to the processes of proton exchange with water, the signal did not observed.

A	ssignment	Compounds Chemical shifts δ, ppm					
Part	Groups	10	11	12	13	14	
	N ^{1,3}	-177.7	-177.6	-178.5	-177.9	-177.3	
	N ^{4,6}	-180.8	-180.4	-181.6	-180.8	-180.1	
	N ⁵	-199.5	-199.3	-199.0	-199.1	-199.6	
Cage	N ² CH₂	-320.7	-320.0	-321.3	-320.3	-319.1	
	7,8	-37.3	-37.4	-37.5	-37.5	-37.1	
	N–NO ₂ 9,11	-39.9	-39.9	-40.0	-39.9	-40.0	
	10	-40.7	-40.8	-40.5	-40.6	-41.1	
	N ¹² –NO ₂	-203.3	196.5 210.5	-184.6	-195.2 -193.2	-190.2	
	N–N ¹³ O ₂	-28.6	-30.2 -27.3	-30.4	-29.5 -29.0	-33.7	
Chain	C=N-NO ₂			-13.1	-13.2		
	C=N-NO ₂		_	n.o.*	-135.6	_	
	NH			-294.8	n.o.*		
	NH ₂			-298.9	-298.5		

Table 2 Assigned ¹⁵N{¹H} NMR shifts [ppm] of nitramines 10–14 in acetone-d₆.

* Probably, due to the splitting on ¹H and ¹⁴N, the signal of this ¹⁵N are very broadened, its intensity is highly reduced, the signal did not observed between a "noise" although the measurements were performed in different modes with elongated pulse delays throughout the night.

Table 3 Assigned IR vibrations [cm⁻¹] of nitramines 7–14 in KBr.

				Comp	ounds			
Assignment			Vi	bration frequ	uencies v, cn	n ⁻¹		
Assignment	7	8	9	10	11	12	13	14
	1601 vs	1608 s	1619 vs	1610 s	1607 s			
as N-NO2 ^{Cage}	1579 vs	1590 vs	1592 vs	1589 vs	1587 vs	1596 vs	1595 m	
	1546 m	1553 s	1574 vs	1560 s	_			1595 vs
as N-NO2 ^{Chain}	1529 m	_	1520 m	1522 s	1540 s 1510 s	1532 m	1533 m	
	1331 s	1339 s	1336 s	1340 s	1331 s	1330 s	1330 m	1330 vs
s N– <i>NO</i> 2	1289 s	1280 vs	1274 vs	1295 vs	1282 vs	1283 s	1285 vs	1284 vs
	1269 vs	1261 vs	1258 vs	1272 vs	1260 vs	1261 vs	1266 vs	1264 vs
						1449 ^{as} m	1455 ^{as} m	
$\mathbf{U} = \mathbf{N} - \mathbf{N} \mathbf{U}_2^{\mathbf{N}}$			-			1308 ^s s		-
CH ₂ / Me	3061 m	3044 m	3037 m	3051 m 3033 m	3040 m	3044 m	3039 w	3040 m
NH		3297 m	3327 m			3358 m	3435 m	
NH_2	-	-	-	-	-	3464 m 3423 s	3345 m	-
C=N			_			1643 s	1641 m	-
C=O	1774 s				-			

Description of the spectra of nitramines 7–10

As can be seen in table 3 the IR spectra of **7–14** show the characteristic absorption bands corresponding to the asymmetrical vibrations of the n-nitro groups of at v^{\sim} 1619 to 1546 cm⁻¹ (nitramine cage) and at v^{\sim} 1540 to 1520 cm⁻¹ (nitramine chain), as well as the bands of the symmetrical vibrations of the *N*-nitro groups at v^{\sim} 1340 to 1258 cm⁻¹. In the IR spectra of **12** and **13** containing the nitroguanyl moiety, additional bands of the *N*-nitro group are observed at v^{\sim} ~1450 cm⁻¹ (asymmetrical vibration of the nitrimino group), the imino group at v^{\sim} ~1640 cm⁻¹ and amino groups at v^{\sim} 3464 to 3297 cm⁻¹.

According to table 1 the resonance peaks of the methylene units, which are directly linked to the pentanitro isowurtzitane cage, mainly appear in the range $\delta_{\rm H}$ 5.39–5.75 ppm in the ¹H NMR and $\delta_{\rm c}$ 66.0–68.7 ppm in the ¹³C{¹H} NMR. While the signals of the CH₂ located further from the cage along the alkylnitramine chain are slightly shifted to a lower field and are observed at $\delta_{\rm H}$ 4.24–5.27 ppm in the ¹h nmr and $\delta_{\rm c}$ 49.4–57.7 ppm in the ¹³C{¹H} NMR. In primary nitramines **8** and **9**, the signal of the CH₂ adjacent to NHNO₂ is more shifted than other ones and appears at $\delta_{\rm H}$ 5.06 and 3.94 ppm in the ¹H NMR, as well as at $\delta_{\rm c}$ 62.7 and 43.8 ppm in the ¹³C{¹H} NMR, respectively. The protons of amino and primary nitramino groups of **8**, **9**, **12**, and **13** are broadened to varying degrees and are observed at high field in the range $\delta_{\rm H}$ 7.5–11.0 ppm. Additionally, in the ¹³C NMR of **12** and **13** bearing the nitroguanyl moiety the signal from the carbon atom of imino group C=N appears at $\delta_{\rm c}$ 160.2 ppm.

The ¹⁴N NMR spectra of the new compounds show signals from the *N*-nitro groups of the pentanitro hexaazaisowurtzitane cage at δ_N –41 to –38 ppm (NO₂, $\Delta v_{1/2} = 97$ –192 Hz) and of the nitramine open-chain at δ_N –34 to –28 ppm (NO₂, $\Delta v_{1/2} = 26$ –174 Hz), except **7**, the peak of the *N*-nitro group in the side chain of which are observed in a lower field at –46 ppm. The ¹⁴N NMR spectra of **12** and **13** containing the nitroguanyl unit show the additional signals of the *N*-nitro group at δ_N –14 ppm ($\Delta v_{1/2} \sim 100$ Hz) and the imino group at δ_N –135 ppm ($\Delta v_{1/2} \sim 41$ Hz).

The ¹⁵N NMR spectra of **10–14** were measured in acetone-d₆ and are summarized in table 2. The signals of the *N*-nitro groups are observed at the lowest field and in the usual range δ_N – 41 to –37 ppm (nitramine cage) and δ_N –34 to –27 ppm (nitramine chain). The signal for the cage nitrogen atom, which is linked to the alkylnitramine chain, appears at the highest field δ_N –321 to –319 ppm. The signals of the nitrogen atoms of the five-membered rings of the cage are found as two close peaks in the middle of the spectra at the range between δ_N –182 and –177 ppm. The peak of the nitrogen atom of the six-membered rings of the cage, which is linked to the NO₂ group, appears at δ_N –199 ppm. The other nitrogen atoms of the alkylnitramine open-chain fragment appear as the signals at the range between δ_N –184 and –211 ppm. In the spectra of **12** and **13** are also observed some resonance peaks corresponding to the amino and imino nitrogen atoms of the nitroguanyl moiety.

1) Single crystal X-ray diffraction of compound 10

The X-ray diffraction study of **10** was carried out on a «Bruker SMART APEX DUO CCD» diffractometer equipped with a Photon-III area-detector (MoK α radiation: $\lambda = 0.71073$ Å, graphite monochromator, ω -scan) at 120 K. The structures were solved by a direct method and refined by least squares in the anisotropic full-matrix approximation in F²_{hkl}. The positions of hydrogen atoms were calculated geometrically and refined in the isotropic approximation by the riding model. All calculations were performed using the SHELXT program package.⁶ Detailed crystallographic information is provided in Tables 4, 5, and structure are presented in Fig. 1, 2. Full crystallographic data have been deposited with the Cambridge Crystallographic Data Center, CCDC 2111284. Copies of the data can be obtained free of charge *via* <u>https://www.ccdc.cam.ac.uk/structures/</u>.

Single crystals of 10 suitable for X-ray diffraction measurements were obtained by slow evaporation from a solution of 10 in a mixture of MeCN and H_2O at room temperature.

Table 4 Detail Crystallographic data of compounds **10** according to single crystal X-ray diffraction analysis.

Formula	C8H11N13O12
Formula weight [g·mol ⁻¹]	481.26
Temperature [K]	120
Radiation	MoKα (λ = 0.71073 Å)
Crystal system	monoclinic
Space group	P 21/c
Unit cell dimensions	a = 8.7416(2) Å, α = 90° b = 1.9374(3) Å, β = 97.207(1)° c = 16.2335(4) Å, γ = 90°
<i>V</i> [Å ³]	1680.61(7)
Z / Z	4 / 1
$ ho_{calc} \left[g \cdot cm^{-3}\right]$	1.902
μ [mm ⁻¹]	0.177
<i>F</i> (000)	984
crystal colour	colourless
crystal size [mm ³]	0.33 × 0.28 × 0.08
θ range [°]	2.35 to 34.73
Index ranges	$-13 \le h \le 13, -18 \le k \le 18, -24 \le l \le 24$
Reflections measured	32903
Independent reflections	6342 [R(int) = 0.0320]
Restraints applied/parameters refined	0 / 299
Goodness-of-fit on <i>F</i> ²	1.017
Rections with $I > 2\sigma(I)$	4984
Final <i>R</i> indeces $[I \ge 2\sigma(I)]$	$R_1 = 0.0332, wR_2 = 0.0877$
Final <i>R</i> indeces [all data]	$R_1 = 0.0453, wR_2 = 0.0916$
Residual electron density (ρ_{max}/ρ_{min}) [e Å ⁻³ / e Å ⁻³]	0.449 /0.325
CCDC number	2111284

Fig. 1. General view of molecule 10 in crystal. Anisotropic displacement parameters are drawn at 50% probability level.

		(0)		
lable 5 Selected bond lengths	(A), bond angles	(°) and torsion a	ngles (°) of compour	nd 10

Bond lengths	
Cage nitro groups	
N(1)–N(7)	1.3803(11)
N(2)–N(8)	1.4036(11)
N(3)–N(9)	1.4011(11)
N(4)–N(10)	1.3713(11)
N(5)–N(11)	1.3971(11)
Nitramine open-chain	
N(6)–C(7)	1.4683(11)
C(7)–N(12)	1.4597(12)
N(12)–C(8)	1.4616(13)
N(12)–N(13) (Nitro group)	1.3584(11)

Table 5 (continued)	
Bond angles	
Cage nitro groups	
N(7)-N(1)-C(1)	117.41(7)
N(7)-N(1)-C(3)	118.88(7)
N(8)–N(2)–C(2)	119.74(7)
N(8)–N(2)–C(5)	118.93(7)
N(9)–N(3)–C(1)	118.53(7)
N(9)–N(3)–C(4)	117.40(7)
N(10)–N(4)–C(2)	121.20(8)
N(10)–N(4)–C(6)	121.70(7)
N(11)–N(5)–C(3)	120.36(7)
N(11)–N(5)–C(5)	120.50(7)
Nitramine open-chain	
N(6)–C(7)–N(12)	111.31(7)
C(7)–N(12)–C(8)	121.27(8)
N(13)–N(12)–C(7) (<i>Nitro group</i>)	115.03(7)
N(13)–N(12)–C(8) (<i>Nitro group</i>)	116.10(8)
Torsion angles	
Cage nitro groups	
N(7)-N(1)-C(3)-C(4) (equatorial)	-165.26(7)
N(8)–N(2)–C(5)–C(6) (axial)	-124.18(8)
N(9)–N(3)–C(4)–C(3) (axial)	-116.42(8)
N(10)–N(4)–C(6)–C(5) (axial)	128.47(8)
N(11)–N(5)–C(5)–C(6) (<i>middle</i>)	140.50(8)
N(11)–N(5)–C(3)–C(4) (<i>middle</i>)	-141.89(8)
Nitramine open-chain	
C(4)–N(6)–C(7)–N(12) (<i>axial</i>)	-119.51(8)
C(6)–N(6)–C(7)–N(12) (<i>axial</i>)	105.08(9)

Fig. 2 Hirshfeld surface calculations, 2D fingerprint plots in crystal stacking and pie graph of percentage contributions of the individual atomic contacts to the Hirshfeld surface of **10**.

Fig. 3 Experimental (blue) and calculated (red) powder diffraction pattern for **10** at ambient conditions (~298 K, constrained Rietveld refinement). **Calculated crystal density is 1.860** g·cm⁻³. The most intense reflection corresponding to an unidentified admixture phase is shown the with green arrow, the total area of the diffraction pattern corresponding to this phase does not exceed 1.1%.
2) Single crystal X-ray diffraction of compound 11

The X-ray diffraction study of **11** was carried out on a four-circle Rigaku Synergy S diffractometer equipped with a HyPix600HE area-detector (CuK α radiation: $\lambda = 1.54184$ Å, graphite monochromator, kappa geometry, shutterless ω -scan technique) at 100K. The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program.¹⁰ The structure was solved by direct methods using SHELXT⁹ and refined on *F*² using SHELXL-2018¹¹ in the OLEX2 program.¹² All non-hydrogen atoms were refined with individual anisotropic displacement parameters. All hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters. A rotating group model was applied for methyl groups. Detailed crystallographic information is provided in Tables 6, 7 and structure are presented in Fig. 4–6. Full crystallographic data have been deposited with the Cambridge Crystallographic Data Center, CCDC 2121216. Copies of the data can be obtained free of charge *via* https://www.ccdc.cam.ac.uk/structures/.

Single crystals of **11** suitable for X-ray diffraction measurements were obtained by slow evaporation from a solution of **11** in a mixture of MeCN and H_2O at room temperature.

Table o Detail Crystallographic data of TT according to single crystal A-ray dimaction and	ographic data of 11 according to single crystal X-ray diffraction	on analysis
--	---	-------------

Formula	C10H15N15O14
Formula weight [g·mol ⁻¹]	569.37
Temperature [K]	100(2)
Radiation	ΜοΚα (<i>λ</i> = 0.71073 Å)
Crystal system	Monoclinic
Space group	P 21/c
Unit cell dimensions	$a = 14.18150(10)$ Å, $\alpha = 90^{\circ}$ $b = 13.83480(10)$ Å, $\beta = 93.9580(10)^{\circ}$ $c = 21.5145(2)$ Å, $\gamma = 90^{\circ}$
<i>V</i> [Å ³]	4211.04(6)
Z / Z	8 / 2
ρ _{calc} [g·cm ^{−3}]	1.796
μ [mm ⁻¹]	1.474
<i>F</i> (000)	2336
crystal colour	Colourless
crystal size [mm ³]	0.05 × 0.03 × 0.01
θ range [°]	3.124 to 78.485
Index ranges	$-18 \leq h \leq 17, -17 \leq k \leq 17, -27 \leq l \leq 25$
Reflections measured	59336
Independent reflections	9011 [R(int) = 0.0488]
Restraints applied/parameters refined	71 / 799
Goodness-of-fit on <i>F</i> ²	1.048
Reflections with $l > 2\sigma(l)$	8476
Final <i>R</i> indeces $[l \ge 2\sigma(l)]$	$R_1 = 0.0505, wR_2 = 0.1384$
Final <i>R</i> indeces [all data]	$R_1 = 0.0527, wR_2 = 0.1403$
Residual electron density (ρ_{max} / ρ_{min}) [e Å ⁻³ / e Å ⁻³]	0.624 /0.587
CCDC number	2121216

Fig. 4 General view of the first molecule of 11 in the unit cell. Anisotropic displacement parameters are drawn at 50% probability level.

Fig. 5 General view of the second molecule of 11 in the unit cell, the atoms at the end of the nitramine open-chain as well as one cage nitro group are disordered. Anisotropic displacement parameters are drawn at 50% probability level.

ound 11

Table 7 Selected bond lengths (Å), bond angles	s (°) and torsion angles (°) of comp
Bond lengths	
Cage nitro groups	
N(1)–N(7) / N(16)–N(22)	1.378(2) / 1.379(2)
N(2)–N(8) / N(17)–N(23)	1.4154(19) / 1.361(2)
N(3)–N(9) / N(18)–N(24), N(18A)–N(24A)	1.4131(19) / 1.394(3), 1.391(4)
N(4)–N(10) / N(19)–N(25)	1.3495(19) / 1.362(3)
N(5)–N(11) / N(20)–N(26)	1.3983(19) / 1.390(2)
Nitramine open-chain	
N(6)–C(7) / N(21)–C(17)	1.463(2) / 1.460(2)
C(7)–N(12) / C(17)–N(27)	1.455(2) / 1.456(2)
N(12)–C(8) / N(27)–C(18)	1.467(2) / 1.464(3)
N(12)–N(13) / N(27)–N(28) (<i>Nitro group</i>)	1.363(2) / 1.357(2)
C(8)–C(9) / C(18)–C(19)	1.529(2) / 1.542(3)
C(9)–N(14) / C(19)–N(29), C(19)–N(29A)	1.461(2) / 1.484(4), 1.485(5)
N(14)–C(10) / N(29)–C(20), N(29A)–C(20A)	1.467(3) / 1.461(4), 1.461(5)
N(14)–N(15) / N(29)–N(30), N(29A)–N(30A)	1.348(2) / 1.362(3), 1.363(4)
(Nitro group)	
S74	

Table 7 (continued)

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Bond angles	
$\begin{split} & \text{N(7)-N(1)-C(1)} / \text{N(22)-N(16)-C(11)} & 117.89(14) / 122.43(14) \\ & \text{N(7)-N(1)-C(3)} / \text{N(22)-N(16)-C(13)} & 119.91(14) / 121.54(14) \\ & \text{N(8)-N(2)-C(2)} / \text{N(23)-N(17)-C(12)} & 115.65(13) / 117.71(14) \\ & \text{N(8)-N(2)-C(2)} / \text{N(23)-N(17)-C(15)} & 117.24(13) / 118.3(2) \\ & \text{N(9)-N(3)-C(1)} / \text{N(24)-N(18)-C(11)} & 117.81(13) / 116.9(2) \\ & \text{N(9)-N(3)-C(4)} / \text{N(24)-N(18)-C(14)} & 117.81(13) / 116.9(2) \\ & \text{N(10)-N(4)-C(2)} / \text{N(25)-N(19)-C(12)} & 119.96(13) / 120.1(2) \\ & \text{N(10)-N(4)-C(2)} / \text{N(25)-N(19)-C(16)} & 123.09(13) / 120.8(2) \\ & \text{N(11)-N(5)-C(3)} / \text{N(26)-N(20)-C(13)} & 118.84(13) / 120.47(14) \\ & \text{N(11)-N(5)-C(5)} / \text{N(26)-N(20)-C(15)} & 118.52(13) / 119.90(14) \\ & \text{Nitramine open-chain} \\ & \text{N(6)-C(7)-N(12)} / \text{N(21)-C(17)-N(27)} & 109.45(13) / 109.47(14) \\ & \text{C(7)-N(12)-C(8)} / \text{C(17)-N(27)-C(18)} & 1122.76(14) / 122.61(18) \\ & \text{N(13)-N(12)-C(7)} / \text{N(28)-N(27)-C(18)} & (Nitro group) \\ & \text{N(13)-N(12)-C(7)} / \text{N(28)-N(27)-C(18)} & (Nitro group) \\ & \text{N(13)-N(12)-C(8)} / \text{N(28)-N(27)-C(18)} & (Nitro group) \\ & \text{N(13)-N(12)-C(8)} / \text{N(28)-N(27)-C(18)} & (Nitro group) \\ & \text{N(13)-N(12)-C(8)} / \text{N(28)-N(27)-C(19)} & 114.24(15) / 113.49(18) \\ & \text{C(8)-C(9)-N(14)} / (C(18)-C(19)-N(29) & 117.70(14) / 117.4(2) \\ & \text{N(12)-C(6)} / \text{N(20)-N(29)-C(20)} & 122.60(15) / 124.4(2) \\ & \text{C(18)-C(19)-N(29)-C(20)} & 117.93(16) / 117.8(2) \\ & \text{N(15)-N(14)-C(10)} / \text{N(30)-N(29)-C(20)} & 117.93(16) / 117.8(2) \\ & \text{N(30A)-N(29A)-C(19)} & \text{N(110-N(14)} / 116.92(1) \\ & \text{N(30A)-N(29A)-C(19)} & 117.93(16) / 117.8(2) \\ & \text{N(30A)-N(29A)-C(19)} & 117.93(16) / 117.8(2) \\ & \text{N(10)-N(14)-C(3)} / \text{N(24)-N(16)-C(13)} & -117.00(15) / -122.5(2) \\ & axial / equatorial \\ & \text{N(24A)-N(18A)-C(14)-C(13)} & -117.00(15) / -122.5(2) \\ & axial / equatorial \\ & \text{N(10)-N(1-C(5)-C(6)} / \text{N(26)-N(20)-C(15)} & 177.55(14) / 177.5(4) \\ & equatorial / equatorial \\ & \text{N(10)-N(1-C(5)-C(5)} / \text{N(26)-N(20)-C(15)} & -151.14(14) / 140.75(15) \\ & \text{middle} / middle \\ & \text{middle} / \text{middle} \\ & N(11)-N(5)-C$	Cage nitro groups	
$\begin{split} & \text{N(7)-N(1)-C(1)} / \text{N(22)-N(16)-C(13)} & \text{117.39}(14) / \text{122.54}(14) \\ & \text{N(8)-N(2)-C(2)} / \text{N(23)-N(17)-C(12)} & \text{115.65}(13) / \text{117.71}(14) \\ & \text{N(8)-N(2)-C(5)} / \text{N(23)-N(17)-C(15)} & \text{117.24}(13) / \text{119.52}(15) \\ & \text{N(9)-N(3)-C(1)} / \text{N(24)-N(18)-C(11)} & \text{117.63}(13) / \text{118.3}(2) \\ & \text{N(24A)-N(18A)-C(14)} & \text{117.81}(13) / \text{116.9}(2) \\ & \text{N(24A)-N(18A)-C(14)} & \text{121.5}(5) \\ & \text{N(10)-N(4)-C(2)} / \text{N(25)-N(19)-C(12)} & \text{119.96}(13) / \text{120.1}(2) \\ & \text{N(10)-N(4)-C(6)} / \text{N(25)-N(19)-C(16)} & \text{123.09}(13) / \text{120.8}(2) \\ & \text{N(11)-N(5)-C(3)} / \text{N(26)-N(20)-C(15)} & \text{118.84}(13) / 119.90(14) \\ & \text{Nitramine open-chain} \\ & \text{N(6)-C(7)-N(12)} / \text{N(21)-C(17)-N(27)} & \text{109.45}(13) / 109.47(14) \\ & \text{C(7)-N(12)-C(8)} / \text{N(28)-N(27)-C(18)} & \text{112.76}(14) / 117.71(18) \\ & \text{N(13)-N(12)-C(8)} / \text{N(28)-N(27)-C(17)} & \text{Nitra group)} & \text{117.70}(14) / 117.71(14) \\ & \text{N(13)-N(12)-C(8)} / \text{N(28)-N(27)-C(18)} & \text{Nitra group)} & \text{117.20}(14) / 117.4(2) \\ & \text{N(12)-C(8)-C(9)} / \text{N(27)-C(18)-C(19)} & \text{112.56}(15) / 113.4(2) \\ & \text{C(18)-C(19)-N(29)-C(20)} & \text{112.56}(15) / 113.4(2) \\ & \text{C(18)-C(19)-N(29)-C(20)} & \text{112.56}(15) / 113.4(2) \\ & \text{C(18)-C(19)-N(29)-C(20)} & \text{117.93}(16) / 117.8(2) \\ & \text{N(10)-N(4)-C(0)} / \text{N(30)-N(29)-C(20)} & \text{117.93}(16) / 117.8(2) \\ & \text{N(30A)-N(29A)-C(20A)} & \text{114.69}(19) \\ & \text{N(7)-N(1)-C(3)-C(4)} / \text{N(22)-N(16)-C(13)-C(14)} & -169.78}(14) / 136.31(15) \\ & equatorial / equatorial \\ & \text{N(30A)-N(29A)-C(19)} & \text{116.93}(16) / 116.9(2) \\ & \text{N(30A)-N(29A)-C(20A)} & \text{114.57}(15) / 168.43}(14) \\ & \text{axial} / equatorial \\ & \text{N(10)-N(4)-C(5)-C(5) / \text{N(25)-N(10)-C(13)} & -117.00(15) / -122.5(2) \\ & \text{axial} / equatorial \\ & \text{N(10)-N(4)-C(5) / \text{N(26)-N(20)-C(13)-C(14)} & -169.78}(14) / 136.31(15) \\ & equatorial / equatorial \\ & \text{N(10)-N(4)-C(5) / \text{N(26)-N(20)-C(13)-C(14)} & -117.00(15) / -122.5(2) \\ & \text{axial} / equatorial \\ & \text{N(10)-N(4)-C(5) / \text{N(26)-N(20)-C(13)-C(14)} & -117.00(15) / -122.5(2) \\ & \text{axial} / equatorial \\ & N(10)-N(4)-C(5$	N(7) = N(1) = C(1) / N(22) = N(16) = C(11)	117 00/14) / 100 40/14)
$\begin{split} N(-)-N(1)-C(3) / N(22)-N(16)-C(13) & 119.91(14) / 121.54(14) \\ N(8)-N(2)-C(2) / N(23)-N(17)-C(12) & 115.65(13) / 117.71(14) \\ N(8)-N(2)-C(2) / N(23)-N(17)-C(15) & 117.24(13) / 119.52(15) \\ N(9)-N(3)-C(1) / N(24)-N(18)-C(11) & 117.83(13) / 118.3(2) \\ N(9)-N(3)-C(4) / N(24)-N(18)-C(14) & 117.81(13) / 116.9(2) \\ N(24)-N(18)-C(14) & 117.81(13) / 116.9(2) \\ N(10)-N(4)-C(2) / N(25)-N(19)-C(12) & 119.96(13) / 120.1(2) \\ N(10)-N(4)-C(2) / N(25)-N(19)-C(16) & 123.09(13) / 120.8(2) \\ N(11)-N(5)-C(3) / N(26)-N(20)-C(13) & 118.84(13) / 120.47(14) \\ N(11)-N(5)-C(3) / N(26)-N(20)-C(13) & 118.84(13) / 109.47(14) \\ N(11)-N(5)-C(5) / N(26)-N(20)-C(13) & 118.52(13) / 119.9(14) \\ N(13)-N(12)-C(7) / N(26)-N(27)-C(18) & 0.118 \\ N(13)-N(12)-C(7) / N(28)-N(27)-C(18) & 0.118 \\ N(13)-N(12)-C(8) / N(28)-N(27)-C(18) & 0.118 \\ N(13)-N(12)-C(8) / N(28)-N(27)-C(18) & 0.117 \\ N(14) - N(14) / C(18)-C(19) & 117.70(14) / 117.71(18) \\ N(13)-N(12)-C(8) / N(28)-N(27)-C(18) & 0.118 \\ C(8)-C(9)-N(14) / C(18)-C(19) & 112.5G(15) / 113.43(18) \\ C(8)-C(9)-N(14) / C(19)-N(27)-C(16) & 112.5C(15) / 113.43(18) \\ C(8)-C(9)-N(14) / C(19)-N(29)-C(20) & 112.3G(15) / 113.43(18) \\ C(8)-C(9)-N(14)-C(9) / N(29)-C(20) & 117.93(16) / 117.8(2) \\ N(30A)-N(29A)-C(19) & 117.93(16) / 117.8(2) \\ N(30A)-N(29A)-C(19) & 117.93(16) / 117.8(2) \\ N(30A)-N(29A)-C(19) & 116.95(14) / 136.31(15) \\ equatorial / equatorial \\N(30)-N(29)-C(20) & 116.97(14) / 140.3(14) \\ axial / equatorial \\N(8)-N(2)-C(5)-C(6) / N(24)-N(18)-C(14)-C(13) & -117.00(15) / -122.5(2) \\ axial / equatorial / equatorial \\N(10)-N(1)-C(5)-C(5) / N(26)-N(20)-C(15)-C(1$	N(7) = N(1) = O(1) / N(22) = N(10) = O(11)	117.89(14) / 122.43(14)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	N(7)–N(1)–C(3) / N(22)–N(16)–C(13)	119.91(14) / 121.54(14)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(8)–N(2)–C(2) / N(23)–N(17)–C(12)	115.65(13) / 117.71(14)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(8) - N(2) - C(5) / N(23) - N(17) - C(15)	117 24(13) / 110 52(15)
	N(0) = N(2) = O(3) / N(23) = N(17) = O(13)	117.24(10) / 119.32(10)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N(9)-N(3)-C(1) / N(24)-N(18)-C(11)	117.63(13) / 118.3(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(24A)–N(18A)–C(11)	119.2(4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N(9) - N(3) - C(4) / N(24) - N(18) - C(14)	117 81(13) / 116 9(2)
$\begin{split} & N(10) - N(4) - C(2) \land N(25) - N(19) - C(12) & 119.96(13) / 120.1(2) \\ & N(10) - N(4) - C(6) \land N(25) - N(19) - C(16) & 123.09(13) / 120.8(2) \\ & N(11) - N(5) - C(3) \land N(26) - N(20) - C(13) & 118.84(13) / 120.47(14) \\ & N(11) - N(5) - C(5) \land N(26) - N(20) - C(15) & 118.52(13) / 109.47(14) \\ & C(7) - N(12) - C(8) \land C(17) - N(27) - C(18) & 122.76(14) / 122.61(18) \\ & N(13) - N(12) - C(7) \land N(28) - N(27) - C(17) (\mathit{Nitro group}) & 116.76(14) / 117.71(18) \\ & N(13) - N(12) - C(7) \land N(28) - N(27) - C(18) (\mathit{Nitro group}) & 117.70(14) / 117.4(2) \\ & N(12) - C(8) \land N(28) - N(27) - C(18) (\mathit{Nitro group}) & 117.70(14) / 117.4(2) \\ & N(12) - C(8) - C(9) \land N(27) - C(18) - C(19) & 112.56(15) / 113.4(2) \\ & C(8) - C(9) - N(14) / C(18) - C(19) - N(29) & 112.56(15) / 113.4(2) \\ & C(18) - C(19) - N(29) - C(20) & 122.60(15) / 124.4(2) \\ & C(18) - C(19) - N(29) - C(20) & 117.93(16) / 117.8(2) \\ & N(30) - N(29) - C(19) (\mathit{Nitro group}) & 117.93(16) / 117.8(2) \\ & N(30) - N(29) - C(20) (\mathit{Nitro group}) & 116.93(16) / 116.9(2) \\ & N(30) - N(29A) - C(20A) & 121.4(17) \\ \hline \textbf{Torsion angles} \\ \hline Cage nitro groups \\ & N(7) - N(1) - C(3) / N(22) - N(16) - C(13) - C(14) & -169.78(14) / 136.31(15) \\ equatorial / axial \\ & N(24) - N(18) - C(14) - C(13) & -117.00(15) / -122.5(2) \\ axial / axial / equatorial \\ & N(24) - N(18) - C(14) - C(13) & -177.55(14) / 177.5(4) \\ equatorial \\ & N(24) - N(26) - N(20) - C(13) - C(14) & 149.48(14) / -141.24(14) \\ middle / middle \\ & middle \\ \\ Nitramine open-chain \\ & C(4) - N(6) - C(5) / N(26) - N(20) - C(13) - C(14) & 149.48(14) / -141.24(14) \\ middle \\ & Nitad \\ & N(11) - N(5) - C(5) - C(6) / N(21) - C(17) - N(27) \\ & -73.89(17) / -73.6(2) \\ & axial \\ \\ & C(6$	$N(24\Lambda) N(19\Lambda) C(14)$	101 5(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(24R) = N(10R) = O(14)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(10)–N(4)–C(2) / N(25)–N(19)–C(12)	119.96(13) / 120.1(2)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	N(10)–N(4)–C(6) / N(25)–N(19)–C(16)	123.09(13) / 120.8(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(11) N(5) C(3) / N(26) N(20) C(13)	118 84(13) / 120 47(14)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(11) - N(3) - O(3) / N(20) - N(20) - O(13)	118.84(13) / 120.47(14)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(11)-N(5)-C(5) / N(26)-N(20)-C(15)	118.52(13) / 119.90(14)
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{split} & \text{N(6)} = C(7) = N(12) / N(21) = C(17) = N(27) & 109.45(13) / 109.47(14) \\ & \text{C(7)} = N(12) = C(8) / C(17) = N(27) = C(17) (Nitro group) & 116.76(14) / 117.71(18) \\ & \text{N(13)} = N(12) = C(8) / N(28) = N(27) = C(17) (Nitro group) & 117.70(14) / 117.4(2) \\ & \text{N(12)} = C(8) = C(9) / N(27) = C(18) = C(19) & 114.24(15) / 114.39(18) \\ & \text{C(8)} = C(9) = N(14) / C(18) = C(19) = N(29) & 112.56(15) / 113.4(2) \\ & \text{C(18)} = C(19) = N(29) & 112.56(15) / 113.4(2) \\ & \text{C(18)} = C(19) = N(29A) = C(20A) & 119.6(19) \\ & \text{N(15)} = N(14) = C(9) / N(30) = N(29) = C(20A) & 119.6(19) \\ & \text{N(15)} = N(14) = C(9) / N(30) = N(29) = C(20A) & 118.6(2) \\ & \text{N(30A)} = N(29A) = C(20A) & 118.6(2) \\ & \text{N(30A)} = N(29A) = C(20A) & 116.93(16) / 117.8(2) \\ & \text{N(30A)} = N(29A) = C(20A) & 121.4(17) \\ \hline \hline \textbf{Torsion angles} & \hline \\ \hline Cage nitro groups \\ & \text{N(7)} = N(1) = C(3) = C(4) / N(22) = N(16) = C(13) = C(14) & -169.78(14) / 136.31(15) \\ & equatorial / axial / equatorial \\ & \text{N(9)} = N(2) = C(5) - C(6) / N(22) = N(16) = C(13) = C(14) & -117.00(15) / -122.5(2) \\ & axial / axial / equatorial \\ & \text{N(10)} = N(4) = C(5) - C(5) - N(12) = N(19) = C(14) = C(13) & -117.00(15) / -122.5(2) \\ & axial / equatorial \\ & \text{N(10)} = N(4) = C(5) - N(26) = N(20) = C(13) = C(14) & 149.48(14) / -141.24(14) \\ & \text{middle / middle } \\ \hline & \text{N(11)} = N(5) = C(5) - C(6) / N(26) = N(20) = C(13) = C(14) & 149.48(14) / -141.24(14) \\ & \text{middle / middle } \\ \hline & \text{N(11)} = N(5) = C(5) - C(6) / N(26) = N(20) = C(13) = C(14) & 149.48(14) / -141.24(14) \\ & \text{middle / middle } \\ \hline & \text{Nitramine open-chain} \\ & \text{C(4)} = N(6) = C(7) = N(12) / C(17) = N(27) & -73.89(17) / -73.6(2) \\ & axial / axi$	Nitramine open-chain	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(6) C(7) N(12) / N(21) C(17) N(27)	100 45(12) / 100 47(14)
$\begin{array}{c} {\rm C}(\gamma)={\rm N}(12)={\rm C}(3) / {\rm C}(1) / {\rm -N}(27)={\rm C}(18) & 122.76(14) / 122.61(18) \\ {\rm N}(13)={\rm N}(12)={\rm C}(3) / {\rm N}(28)={\rm N}(27)={\rm C}(17) ({\rm Nitro\ group}) & 116.76(14) / 117.71(18) \\ {\rm N}(13)={\rm N}(12)={\rm C}(8) / {\rm N}(28)={\rm N}(27)={\rm C}(18) ({\rm Nitro\ group}) & 117.70(14) / 117.4(2) \\ {\rm N}(12)={\rm C}(8)={\rm C}(9) / {\rm N}(27)={\rm C}(18)={\rm C}(19) & 114.24(15) / 114.39(18) \\ {\rm C}(8)={\rm C}(9)={\rm N}(14) / {\rm C}(18)={\rm C}(19)={\rm N}(29) & 112.56(15) / 113.4(2) \\ {\rm C}(19)={\rm N}(29)={\rm C}(20) & 122.60(15) / 124.4(2) \\ {\rm C}(19)={\rm N}(29A)={\rm C}(20A) & 119.6(19) \\ {\rm N}(15)={\rm N}(14)={\rm C}(9) / {\rm N}(30)={\rm N}(29)={\rm C}(20) ({\rm Nitro\ group}) & 117.93(16) / 117.8(2) \\ {\rm N}(30A)={\rm N}(29A)={\rm C}(20) ({\rm Nitro\ group}) & 116.93(16) / 116.9(2) \\ {\rm N}(30A)={\rm N}(29A)={\rm C}(20A) & 121.4(17) \\ \hline \hline {\rm Torsion\ angles} & \\ \hline \hline Cage\ nitro\ groups \\ {\rm N}(7)={\rm N}(1)={\rm C}(10) / {\rm N}(20)={\rm N}(29A)={\rm C}(20A) & 121.4(17) \\ \hline \hline {\rm Torsion\ angles} & \\ \hline \hline {\rm C}age\ nitro\ groups \\ {\rm N}(7)={\rm N}(1)={\rm C}(3) / {\rm N}(22)={\rm N}(16)={\rm C}(13)={\rm C}(14) & -169.78(14) / 136.31(15) \\ equatorial & / axial & nail \\ {\rm N}(8)={\rm N}(2)={\rm C}(5)={\rm C}(6) / {\rm N}(23)={\rm N}(17)={\rm C}(15)={\rm C}(16) & -114.57(15) / 168.43(14) \\ axial & / equatorial \\ {\rm N}(9)={\rm N}(3)={\rm C}(4)={\rm C}(3) / {\rm N}(24)={\rm N}(18)={\rm C}(14)={\rm C}(13) & -117.00(15) / -122.5(2) \\ axial & / equatorial \\ {\rm N}(10)={\rm N}(4)={\rm C}(6)={\rm C}(5) / {\rm N}(26)={\rm N}(20)={\rm C}(15)={\rm C}(15) & 177.55(14) / 177.5(4) \\ equatorial & equatorial \\ {\rm N}(11)={\rm N}(5)={\rm C}(5)={\rm C}(6) / {\rm N}(26)={\rm N}(20)={\rm C}(15)={\rm C}(16) & -151.14(14) / 140.75(15) \\ middle & / middle \\ {\rm N}(11)={\rm N}(5)={\rm C}(7)={\rm N}(12) / {\rm C}(14)={\rm C}(17)={\rm N}(27) & -73.89(17) / -73.6(2) \\ axial & / axial \\ {\rm C}(6)={\rm N}(6)={\rm C}(7)={\rm N}(12) / {\rm C}(16)={\rm N}(21)={\rm C}(17)={\rm N}(27) \\ axial & / axial \\ {\rm C}(6)={\rm N}(6)={\rm C}(7)={\rm N}(12) / {\rm C}(16)={\rm N}(27) & 147.38(14) / 143.84(17) \\ middle & / middle \\ \end{array}$	N(0) = O(7) = N(12) / N(21) = O(17) = N(27)	103.40(13) / 103.47(14)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(7)–N(12)–C(8) / C(17)–N(27)–C(18)	122.76(14)/122.61(18)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(13)–N(12)–C(7) / N(28)–N(27)–C(17) (<i>Nitro aroup</i>)	116.76(14) / 117.71(18)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(13) = N(12) = C(8) / N(28) = N(27) = C(18) (Nitro group)	11770(14)/1174(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(10) = N(12) = O(0) / N(07) = O(10) (100 Group)	117.70(14)/117.4(2)
$\begin{array}{ccccc} C(8)-C(9)-N(14) / C(18)-C(19)-N(29) & 112.56(15) / 113.4(2) \\ C(18)-C(19)-N(29)-C(20) & 111.4(16) \\ C(9)-N(14)-C(10) / C(19)-N(29)-C(20) & 122.60(15) / 124.4(2) \\ C(19)-N(29A)-C(20A) & 119.6(19) \\ N(15)-N(14)-C(9) / N(30)-N(29)-C(20) (Nitro group) & 117.93(16) / 117.8(2) \\ N(30A)-N(29A)-C(19) & 118(2) \\ N(15)-N(14)-C(10) / N(30)-N(29)-C(20) (Nitro group) & 116.93(16) / 116.9(2) \\ N(30A)-N(29A)-C(20A) & 121.4(17) \\ \hline { Torsion angles } \\ \hline { Cage nitro groups } \\ N(7)-N(1)-C(3)-C(4) / N(22)-N(16)-C(13)-C(14) & -169.78(14) / 136.31(15) \\ equatorial / & axial \\ N(8)-N(2)-C(5)-C(6) / N(23)-N(17)-C(15)-C(16) & -114.57(15) / 168.43(14) \\ axial / & equatorial \\ N(9)-N(3)-C(4)-C(3) / N(24)-N(18)-C(14)-C(13) & -117.00(15) / -122.5(2) \\ axial / & axial \\ N(24A)-N(18A)-C(14)-C(13) & -172.8(7) \\ equatorial \\ N(10)-N(4)-C(6)-C(5) / N(25)-N(19)-C(16)-C(15) & 177.55(14) / 177.5(4) \\ equatorial / & equatorial \\ N(11)-N(5)-C(5)-C(6) / N(26)-N(20)-C(13)-C(14) & 149.48(14) / -141.24(14) \\ middle / & middle \\ N(11)-N(5)-C(3)-C(4) / N(26)-N(20)-C(15)-C(16) & -151.14(14) / 140.75(15) \\ middle / & middle \\ \hline Nitramine open-chain \\ C(4)-N(6)-C(7)-N(12) / C(14)-N(21)-C(17)-N(27) & -73.89(17) / -73.6(2) \\ axial / & axial \\ C(6)-N(6)-C(7)-N(12) / C(16)-N(21)-C(17)-N(27) & 147.38(14) / 143.84(17) \\ middle / & middle / \\ \hline \end{array}$	N(12) - U(8) - U(9) / N(27) - U(18) - U(19)	114.24(15) / 114.39(18)
$\begin{array}{cccc} C(18)-C(19)-N(29A) & 111.4(16) \\ C(9)-N(14)-C(10) / C(19)-N(29)-C(20) & 122.60(15) / 124.4(2) \\ C(19)-N(29A)-C(20A) & 119.6(19) \\ N(15)-N(14)-C(9) / N(30)-N(29)-C(19) & 117.93(16) / 117.8(2) \\ N(30A)-N(29A)-C(19) & 118(2) \\ N(15)-N(14)-C(10) / N(30)-N(29)-C(20) (Nitro group) & 116.93(16) / 116.9(2) \\ N(30A)-N(29A)-C(20A) & 121.4(17) \\ \hline Torsion angles & & & & & & & & & & & & & & & & & & &$	C(8)–C(9)–N(14) / C(18)–C(19)–N(29)	112.56(15) / 113.4(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)–C(19)–N(29A)	111.4(16)
$\begin{array}{c} \text{C(15)} \text{N(14)} \text{C(15)} \text{C(15)} \text{N(25)} \text{C(25)} \\ \text{C(19)} \text{N(25)} \text{C(20)} \\ \text{N(15)} \text{N(14)} \text{C(19)} \text{N(29)} \text{C(20)} \\ \text{N(30A)} \text{N(29A)} \text{C(19)} \\ \text{N(30A)} \text{N(29A)} \text{C(19)} \\ \text{N(15)} \text{N(14)} \text{C(10)} \text{N(30)} \text{N(29)} \text{C(20)} \\ \text{N(30A)} \text{N(29A)} \text{C(20A)} \\ \text{N(15)} \text{N(14)} \text{C(10)} \text{N(30)} \text{N(29)} \text{C(20)} \\ \text{N(30A)} \text{N(29A)} \text{C(20A)} \\ \text{N(15)} \text{N(10)} \text{C(10)} \text{N(30)} \text{N(29A)} \text{C(20A)} \\ \text{N(30A)} \text{N(29A)} \text{C(20A)} \\ \text{N(10)} \text{C(1)} \text{C(14)} \text{C(13)} \text{C(14)} \text{C(15)} \text{C(14)} \text{116.93(16)} / 116.9(2) \\ \text{N(30A)} \text{N(29A)} \text{C(20A)} \\ \text{N(7)} \text{N(1)} \text{C(3)} \text{C(4)} \text{N(22)} \text{N(16)} \text{C(13)} \text{C(14)} \text{-169.78(14)} / 136.31(15) \\ \text{equatorial} / \text{axial} \text{axial} \text{-114.57(15)} / 168.43(14) \\ \text{axial} / \text{equatorial} \text{-114.57(15)} / 168.43(14) \\ \text{axial} \text{N(9)} \text{N(2)} \text{C(4)} \text{N(23)} \text{N(17)} \text{C(14)} \text{-117.00(15)} / \text{-122.5(2)} \\ \text{axial} \text{N(24A)} \text{N(18A)} \text{C(14)} \text{C(13)} \text{-117.00(15)} / \text{-122.5(2)} \\ \text{axial} \text{N(24A)} \text{N(18A)} \text{C(14)} \text{C(13)} \text{-177.55(14)} / 177.5(4) \\ \text{equatorial} \text{N(10)} \text{-N(4)} \text{C(6)} \text{C(5)} \text{N(26)} \text{-N(20)} \text{C(16)} \text{C(15)} \text{177.55(14)} / 177.5(4) \\ \text{equatorial} \text{middle} \text{middle} \text{N(11)} \text{-N(5)} \text{C(5)} \text{C(6)} \text{N(26)} \text{-N(20)} \text{C(16)} \text{-151.14(14)} / 140.75(15) \\ \hline \text{middle} / \text{middle} \text{Mitramine open-chain} \\ \text{C(4)} \text{-N(6)} \text{C(7)} \text{-N(21)} \text{C(17)} \text{-N(27)} \text{-73.89(17)} / -73.6(2) \\ \text{axial} / \text{axial} / \text{axial} (147.38(14) / 143.84(17) \\ \text{middle} / \text{middle} / \text{middle} / (147.38(14) / 143.84(17) \\ \text{middle} / \text{middle} / (147.38(14) / 143.84(17) \\ \text{middle} / (147.38(14) / 143.84(17) \\ (147.38(14) / 143.84(17) (147.38(14) / 143.84(17) \\ (147.38(14) / 143.84(17) (147.38(14) / 143.84(17) \\ (157.38(14) / 143.84(17) $	C(9) = N(14) = C(10) / C(19) = N(29) = C(20)	122.60(15) / 124.4(2)
$\begin{array}{c} N(15)-N(14)-C(9)/N(30)-N(29)-C(19)(Nitro\ group) \\ N(30)-N(29)-C(19)(Nitro\ group) \\ N(30)-N(29)-C(20)(Nitro\ group) \\ N(30)-N(29)-C(20)(Nitro\ group) \\ N(30A)-N(29)-C(20A) \\ \hline 116.93(16)/116.9(2) \\ N(30A)-N(29)-C(20A) \\ 121.4(17) \\ \hline \textbf{Torsion\ angles} \\ \hline \textbf{C} age\ nitro\ groups \\ N(7)-N(1)-C(3)-C(4)/N(22)-N(16)-C(13)-C(14) \\ equatorial / axial \\ N(8)-N(2)-C(5)-C(6)/N(23)-N(17)-C(15)-C(16) \\ n(3)-C(4)-C(3)/N(24)-N(18)-C(14)-C(13) \\ axial / equatorial \\ N(9)-N(3)-C(4)-C(3)/N(24)-N(18)-C(14)-C(13) \\ n(24A)-N(18A)-C(14)-C(13) \\ equatorial \\ N(10)-N(4)-C(6)-C(5)/N(25)-N(19)-C(16)-C(15) \\ equatorial \\ N(11)-N(5)-C(5)-C(6)/N(26)-N(20)-C(13)-C(14) \\ niddle \\ n(11)-N(5)-C(5)-C(6)/N(26)-N(20)-C(13)-C(14) \\ niddle \\ N(11)-N(5)-C(3)-C(4)/N(26)-N(20)-C(15)-C(16) \\ niddle \\ N(11)-N(5)-C(3)-C(4)/N(26)-N(20)-C(15)-C(16) \\ niddle \\ niddle \\ Nitramine\ open-chain \\ C(4)-N(6)-C(7)-N(12)/C(14)-N(21)-C(17)-N(27) \\ axial \\ axial \\ niddle \\ $	O(3) = N(14) = O(10) / O(13) = N(23) = O(20)	122.00(10)/124.4(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(19)-N(29A)-C(20A)	119.6(19)
$\begin{array}{c cccc} N(30A) - N(29A) - C(19) & 118(2) \\ N(15) - N(14) - C(10) / N(30) - N(29) - C(20) (Nitro group) & 116.93(16) / 116.9(2) \\ N(30A) - N(29A) - C(20A) & 121.4(17) \end{array}$	N(15)–N(14)–C(9) / N(30)–N(29)–C(19) (<i>Nitro group</i>)	117.93(16) / 117.8(2)
$\begin{array}{l lllllllllllllllllllllllllllllllllll$	N(30A)–N(29A)–C(19)	118(2)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	N(15) = N(14) = C(10) / N(30) = N(29) = C(20) (Nitro aroun)	116.03(16) / 116.0(2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N(10) = N(10) + N(00) = N(00A) + O(00A)	
$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	N(30A)–N(29A)–C(20A)	121.4(17)
$\begin{array}{rcl} Cage nitro groups \\ N(7)-N(1)-C(3)-C(4) / N(22)-N(16)-C(13)-C(14) & -169.78(14) / 136.31(15) \\ equatorial & / axial \\ N(8)-N(2)-C(5)-C(6) / N(23)-N(17)-C(15)-C(16) & -114.57(15) / 168.43(14) \\ axial & / equatorial \\ N(9)-N(3)-C(4)-C(3) / N(24)-N(18)-C(14)-C(13) & -117.00(15) / -122.5(2) \\ axial & / axial \\ N(24A)-N(18A)-C(14)-C(13) & -172.8(7) \\ equatorial \\ N(10)-N(4)-C(6)-C(5) / N(25)-N(19)-C(16)-C(15) & 177.55(14) / 177.5(4) \\ equatorial & / equatorial \\ N(11)-N(5)-C(5)-C(6) / N(26)-N(20)-C(13)-C(14) & 149.48(14) / -141.24(14) \\ middle & / middle \\ N(11)-N(5)-C(3)-C(4) / N(26)-N(20)-C(15)-C(16) & -151.14(14) / 140.75(15) \\ middle & / middle \\ \hline Nitramine open-chain \\ C(4)-N(6)-C(7)-N(12) / C(14)-N(21)-C(17)-N(27) & -73.89(17) / -73.6(2) \\ axial & / axial \\ C(6)-N(6)-C(7)-N(12) / C(16)-N(21)-C(17)-N(27) & 147.38(14) / 143.84(17) \\ middle & / middle \\ \hline \end{array}$	Torsion angles	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Cage nitro groups	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	N(7) = N(1) = C(3) = C(4) / N(22) = N(16) = C(13) = C(14)	-169 78(14) / 136 31(15)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(7) = N(1) = O(3) = O(4) / N(22) = N(10) = O(13) = O(14)	-109.70(14) / 130.31(13)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	equatorial / axiai	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(8)–N(2)–C(5)–C(6) / N(23)–N(17)–C(15)–C(16)	–114.57(15) / 168.43(14)
$\begin{array}{c ccccc} N(9)-N(3)-C(4)-C(3) \ / \ N(24)-N(18)-C(14)-C(13) & -117.00(15) \ / \ -122.5(2) \\ axial \ N(24A)-N(18A)-C(14)-C(13) & -172.8(7) \\ equatorial \ N(24A)-N(18A)-C(14)-C(13) & -172.8(7) \\ equatorial \ N(10)-N(4)-C(6)-C(5) \ / \ N(25)-N(19)-C(16)-C(15) & 177.55(14) \ / \ 177.5(4) \\ equatorial \ / \ equatorial \ N(11)-N(5)-C(5)-C(6) \ / \ N(26)-N(20)-C(13)-C(14) & 149.48(14) \ / \ -141.24(14) \\ middle \ / \ middle \ N(11)-N(5)-C(3)-C(4) \ / \ N(26)-N(20)-C(15)-C(16) & -151.14(14) \ / \ 140.75(15) \\ \hline middle \ / \ middle \ N(11)-N(5)-C(3)-C(4) \ / \ N(26)-N(20)-C(15)-C(16) & -151.14(14) \ / \ 140.75(15) \\ \hline middle \ / \ middle \ N(11)-N(6)-C(7)-N(12) \ / \ C(14)-N(21)-C(17)-N(27) & -73.89(17) \ / \ -73.6(2) \\ axial \ / \ axial \ C(6)-N(6)-C(7)-N(12) \ / \ C(16)-N(21)-C(17)-N(27) & 147.38(14) \ / \ 143.84(17) \\ \hline middle \ / \ middle \ Middle \ Middle \ N(14)-N(14)-N(14)-N(14) \ N(14)-N(14)$	axial / equatorial	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(0) N(3) C(4) C(3) / N(24) N(18) C(14) C(13)	117 00(15) / 122 5(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(3) - N(3) - O(4) - O(3) / N(24) - N(10) - O(14) - O(13)	-117.00(13) / -122.3(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	axiai / axiai	
$\begin{array}{c} equatorial \\ N(10)-N(4)-C(6)-C(5) / N(25)-N(19)-C(16)-C(15) \\ equatorial / equatorial \end{array} 177.55(14) / 177.5(4) \\ N(11)-N(5)-C(5)-C(6) / N(26)-N(20)-C(13)-C(14) \\ middle / middle \\ N(11)-N(5)-C(3)-C(4) / N(26)-N(20)-C(15)-C(16) \\ middle / middle \\ \hline Nitramine open-chain \\ C(4)-N(6)-C(7)-N(12) / C(14)-N(21)-C(17)-N(27) \\ axial / axial \\ C(6)-N(6)-C(7)-N(12) / C(16)-N(21)-C(17)-N(27) \\ middle \\ \hline Nitramine open - hold \\ \hline Nitramine open-chain \\ C(4)-N(6)-C(7)-N(12) / C(16)-N(21)-C(17)-N(27) \\ middle \\ \hline Nitramine open - hold \\ \hline $	N(24A)–N(18A)–C(14)–C(13)	-172.8(7)
$\begin{array}{cccc} N(10)-N(4)-C(6)-C(5) \ / \ N(25)-N(19)-C(16)-C(15) & 177.55(14) \ / \ 177.5(4) \\ equatorial \ / \ equatorial \\ N(11)-N(5)-C(5)-C(6) \ / \ N(26)-N(20)-C(13)-C(14) & 149.48(14) \ / \ -141.24(14) \\ middle \ / \ middle \\ N(11)-N(5)-C(3)-C(4) \ / \ N(26)-N(20)-C(15)-C(16) & -151.14(14) \ / \ 140.75(15) \\ \hline middle \ / \ middle \\ \hline Nitramine \ open-chain \\ C(4)-N(6)-C(7)-N(12) \ / \ C(14)-N(21)-C(17)-N(27) & -73.89(17) \ / \ -73.6(2) \\ axial \ / \ axial \\ C(6)-N(6)-C(7)-N(12) \ / \ C(16)-N(21)-C(17)-N(27) & 147.38(14) \ / \ 143.84(17) \\ \hline middle \ / \ middle \\ \hline \end{array}$	equatorial	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(10) N(4) C(6) C(5) / N(25) N(10) C(16) C(15)	177 55(14) / 177 5(4)
$\begin{array}{c ccccc} equatorial & / & equatorial \\ \hline N(11)-N(5)-C(5)-C(6) / N(26)-N(20)-C(13)-C(14) & 149.48(14) / -141.24(14) \\ \hline middle & / & middle \\ \hline N(11)-N(5)-C(3)-C(4) / N(26)-N(20)-C(15)-C(16) & -151.14(14) / 140.75(15) \\ \hline middle & / & middle \\ \hline \hline Nitramine \ open-chain \\ C(4)-N(6)-C(7)-N(12) / C(14)-N(21)-C(17)-N(27) & -73.89(17) / -73.6(2) \\ \hline axial & / & axial \\ C(6)-N(6)-C(7)-N(12) / C(16)-N(21)-C(17)-N(27) & 147.38(14) / 143.84(17) \\ \hline middle & / & middle \\ \hline \end{array}$	10(10) - 10(4) - 0(0) - 0(0) / 10(20) - 10(10) - 0(10)	177.55(14) / 177.5(4)
$\begin{array}{c cccc} N(11)-N(5)-C(5)-C(6) \ / \ N(26)-N(20)-C(13)-C(14) & 149.48(14) \ / \ -141.24(14) \\ \hline middle & / & middle \\ \hline N(11)-N(5)-C(3)-C(4) \ / \ N(26)-N(20)-C(15)-C(16) & -151.14(14) \ / \ 140.75(15) \\ \hline middle & / & middle \\ \hline \hline Nitramine \ open-chain \\ C(4)-N(6)-C(7)-N(12) \ / \ C(14)-N(21)-C(17)-N(27) & -73.89(17) \ / \ -73.6(2) \\ \hline axial & / & axial \\ C(6)-N(6)-C(7)-N(12) \ / \ C(16)-N(21)-C(17)-N(27) & 147.38(14) \ / \ 143.84(17) \\ \hline middle & / & middle \\ \hline \end{array}$	equatorial / equatorial	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(11)–N(5)–C(5)–C(6) / N(26)–N(20)–C(13)–C(14)	149 48(14) /141 24(14)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
middle / middle Nitramine open-chain -73.89(17) / -73.6(2) C(4)-N(6)-C(7)-N(12) / C(14)-N(21)-C(17)-N(27) -73.89(17) / -73.6(2) axial / axial C(6)-N(6)-C(7)-N(12) / C(16)-N(21)-C(17)-N(27) 147.38(14) / 143.84(17) middle / middle	N(11)–N(5)–C(3)–C(4) / N(26)–N(20)–C(15)–C(16)	-151.14(14) / 140.75(15)
Nitramine open-chain C(4)-N(6)-C(7)-N(12) / C(14)-N(21)-C(17)-N(27) -73.89(17) / -73.6(2) axial / axial C(6)-N(6)-C(7)-N(12) / C(16)-N(21)-C(17)-N(27) 147.38(14) / 143.84(17) middle / middle	middle / middle	
$\begin{array}{c} C(4)-N(6)-C(7)-N(12) \ / \ C(14)-N(21)-C(17)-N(27) \\ axial \ / \ axial \\ C(6)-N(6)-C(7)-N(12) \ / \ C(16)-N(21)-C(17)-N(27) \\ middle \ / \ middle \end{array} \qquad -73.89(17) \ / \ -73.6(2) \\ 147.38(14) \ / \ 143.84(17) \\ \end{array}$	Nitramine open-chain	
$\begin{array}{cccc} C(4) - N(0) - C(7) - N(12) / C(14) - N(21) - C(17) - N(27) & -73.89(17) / -73.6(2) \\ axial & / & axial \\ C(6) - N(6) - C(7) - N(12) / C(16) - N(21) - C(17) - N(27) & 147.38(14) / 143.84(17) \\ middle & / & middle \end{array}$	C(A) N/C $C(7)$ N/(0) / $C(4A)$ N/(01) $C(47)$ N/(07)	
axial / axial C(6)–N(6)–C(7)–N(12) / C(16)–N(21)–C(17)–N(27) 147.38(14) / 143.84(17) middle / middle	U(4) = IV(0) = U(7) = IV(12) / U(14) = IV(21) = U(17) = IV(27)	-13.09(17)/-13.0(2)
C(6)–N(6)–C(7)–N(12) / C(16)–N(21)–C(17)–N(27) 147.38(14) / 143.84(17) middle / middle	axial / axial	
middle / middle	C(6)–N(6)–C(7)–N(12) / C(16)–N(21)–C(17)–N(27)	147.38(14) / 143.84(17)
	middle / middle	

Fig. 6 Hirshfeld surface calculations, 2D fingerprint plots in crystal stacking and pie graph of percentage contributions of the individual atomic contacts to the Hirshfeld surface of **11**.

3) Single crystal X-ray diffraction of compound 12

MeCN and H₂O at room temperature.

The X-ray diffraction study of **12** was carried out on a four-circle Rigaku Synergy S diffractometer equipped with a HyPix600HE area-detector (CuK α radiation: $\lambda = 1.54184$ Å, graphite monochromator, kappa geometry, shutterless ω -scan technique) at 100K. The intensity data were integrated and corrected for absorption and decay by the CrysAlisPro program.¹⁰ The structure was solved by direct methods using SHELXT⁹ and refined on *F*² using SHELXL-2018¹¹ in the OLEX2 program.¹² All non-hydrogen atoms were refined with individual anisotropic displacement parameters. Locations of amino hydrogen atoms were refined with individual isotropic displacement parameters. All other hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters. Detailed crystallographic information is provided in Tables 8–10 and structure are presented in Fig. 7, 8. Full crystallographic data have been deposited with the Cambridge Crystallographic Data Center, CCDC 2104897. Copies of the data can be obtained free of charge *via* https://www.ccdc.cam.ac.uk/structures/.

Formula C9H13N17O14 Formula weight [g mol⁻¹] 583.36 Temperature [K] 100 CuK α (λ = 0.71073 Å) Radiation orthorhombic Crystal system Pca21 Space group a = 17.7402(4) Å, $\alpha = 90^{\circ}$ Unit cell dimensions b = 9.2797(4) Å, $\beta = 90^{\circ}$ c = 12.2787(4) Å, $v = 90^{\circ}$ V [Å³] 2021.37(12) Z/Z4/1 ρ_{calc} [g·cm⁻³] 1.917 μ [mm⁻¹] 1.586 F(000) 1192 crystal colour colourless crystal size [mm³] $0.05 \times 0.04 \times 0.005$ θ range [°] 4.765 to 79.343 $-21 \le h \le 22, -11 \le k \le 11, -15 \le l \le$ Index ranges 14 **Reflections measured** 17943 Independent reflections 3924 [R(int) = 0.0498] Restraints applied/parameters refined 1/375 Goodness-of-fit on F² 1.080 Reflections with $l > 2\sigma(l)$ 3539 Final *R* indeces $[l \ge 2\sigma(l)]$ $R_1 = 0.0521, wR_2 = 0.1425$ Final *R* indeces [all data] $R_1 = 0.0574, wR_2 = 0.1471$ Residual electron density (ρ_{max} / ρ_{min}) [e Å⁻³ / e 0.418 / -0.307Å-31 CCDC number 2104897

 Table 8 Detail Crystallographic data of 12 according to single crystal X-ray diffraction analysis.

Single crystals of 12 suitable for X-ray diffraction measurements were obtained by slow evaporation from a solution of 12 in a mixture of

Fig. 7 General view of molecule 12 in crystal. Anisotropic displacement parameters are drawn at 50% probability level.

Table 9 Selected bond lengths (Å), bond angles (°) and torsion angles (°) of compound 12

Bond lengths		
<i>Cage nitro groups</i> N(1)–N(7)	1.415(6)	
N(2)-N(8)	1.392(6)	
N(3)–N(9) N(4)–N(10)	1.341(6) 1.398(6)	
	1.000(0)	
N(5)–N(11)	1.372(6)	
Nitramine open-chain		
N(6)–C(7)	1.449(7)	
C(7)–N(12)	1.468(7)	
C(8)–N(12)	1.469(6)	
N(12)–N(13) (<i>Nitro group</i>)	1.359(6)	
Nitroguanyl moiety		
C(8)–N(14)	1.435(7)	
C(9)–N(14)	1.344(7)	
C(9)–N(15)	1.321(7)	
C(9)–N(16)	1.350(7)	
N(16)–N(17) (<i>Nitro group</i>)	1.342(6)	

Table 9 (continued)		
Bond angles		
Cage nitro groups N(7)-N(1)-C(1) N(7)-N(1)-C(3) N(8)-N(2)-C(2) N(8)-N(2)-C(5) N(9)-N(3)-C(1) N(9)-N(3)-C(4) N(10)-N(4)-C(2) N(10)-N(4)-C(6)	116.0(4) 118.8(4) 122.2(4) 121.2(4) 121.7(4) 122.8(4) 119.3(4) 118.8(4)	
N(11)–N(5)–C(3) N(11)–N(5)–C(5)	120.2(4) 119.9(4)	
Nitramine open-chain N(6)–C(7)–N(12) C(7)–N(12)–C(8) N(13)–N(12)–C(7) (<i>Nitro group</i>) N(13)–N(12)–C(8) (<i>Nitro group</i>)	109.9(4) 122.9(4) 120.0(4) 116.2(4)	
Nitroguanyl moiety N(14)-C(8)-N(12) C(9)-N(14)-C(8) N(15)-C(9)-N(14) N(14)-C(9)-N(16) N(15)-C(9)-N(16) N(17)-N(16)-C(9) (Nitro group)	114.7(4) 122.9(5) 119.1(5) 112.3(4) 128.6(5) 119.6(4)	
Torsion angles		
Cage nitro groups N(7)–N(1)–C(3)–C(4) (axial) N(8)–N(2)–C(5)–C(6) (axial) N(9)–N(3)–C(4)–C(3) (equatorial) N(10)–N(4)–C(6)–C(5) (axial)	114.5(4) -130.1(4) -174.2(4) 120.3(4)	
N(11)–N(5)–C(5)–C(6) (<i>middle</i>) N(11)–N(5)–C(3)–C(4) (<i>middle</i>)	144.9(4) -142.7(4)	
Nitramine open-chain C(4)–N(6)–C(7)–N(12) (axial) C(6)–N(6)–C(7)–N(12) (axial)	-139.7(4) 76.6(5)	
Nitroguanyl moiety N(12)–C(8)–N(14)–C(9)	-80.7(6)	

Table 10 Hydrogen bonds for 12 [Å and °].

D–H…A	type	d(D—H)	d(H···A)	d(D···A)	angle (DHA)
N(14)—H(14)····O(10)#1	intermolecular	0.86(9)	2.46(9)	3.241(6)	151(8)
N(15)–H(15A)····O(3)#2	intermolecular	0.96(7)	2.66(6)	3.189(7)	115(4)
N(15)—H(15)····O(13)	intramolecular	0.96(7)	1.96(6)	2.642(7)	126(5)
N(15)—H(15B)····O(7)#3	Intermolecular	0.91(9)	2.22(9)	3.061(7)	154(8)

Symmetry transformations used to generate equivalent atoms: #1 x,y+1,z; #2 -x+1/2,y+1,z+1/2; #3 x-1/2, -y+2,z.

Fig. 8 Hirshfeld surface calculations, 2D fingerprint plots in crystal stacking and pie graph of percentage contributions of the individual atomic contacts to the Hirshfeld surface of 12.

4) Single crystal X-ray diffraction of compound 14-2MeCN

The X-ray diffraction study of **14**·2MeCN was carried out on a Bruker Quest D8 diffractometer equipped with a Photon-III area-detector (MoK α radiation: $\lambda = 0.71073$ Å graphite monochromator, shutterless ω -scan technique) at 100K. The intensity data were integrated by the SAINT program¹³ and were corrected for absorption and decay using SADABS.¹⁴ The structure was solved by direct methods using SHELXT⁹ and refined on *F*² using SHELXL-2018.¹¹ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in ideal calculated positions and refined as riding atoms with relative isotropic displacement parameters; a rotating group model was applied for methyl groups. The SHELXTL program suite was used for molecular graphics. Detailed crystallographic information is provided in Table 11, 12 and structure is presented in Fig. 9–13. Full crystallographic data have been deposited with the Cambridge Crystallographic Data Center, CCDC 2078088. Copies of the data can be obtained free of charge *via* https://www.ccdc.cam.ac.uk/structures/.

Single crystals of 14×2 MeCN suitable for X-ray diffraction measurements were obtained by slow evaporation from a solution of 14 in a mixture of MeCN and H₂O at room temperature. Upon slow evaporation from a solution of 14 in a mixture of acetone, THF or dioxane and H₂O crystals are formed, which are solvates 14, containing, one molecule of the corresponding solvent.

Table 11 Detail Crystallographic data of 14:2MeCN according to single crystal X-ray diffraction analysis.

Formula	C18H22N26O22
Formula weight [g·mol ⁻¹]	954.61
Temperature [K]	100
Radiation	MoKα (λ = 0.71073 Å)
Crystal system	triclinic
Space group	P-1
Unit cell dimensions	$a = 11.7431(2)$ Å, $\alpha = 89.4340(10)^{\circ}$ $b = 15.9679(3)$ Å, $\beta = 82.7850(10)^{\circ}$ $c = 19.3734(4)$ Å, $\gamma = 73.8080(10)^{\circ}$
<i>V</i> [Å ³]	3459.83(11)
Z / Z'	4 / 2
$ ho_{calc} \left[g \cdot cm^{-3}\right]$	1.833
μ [mm ⁻¹]	0.167
<i>F</i> (000)	1952
crystal colour	colourless
crystal size [mm ³]	0.21 × 0.19 × 0.08
θ range [°]	1.986 to 34.349
Index ranges	$-18 \le h \le 18, -25 \le k \le 25, -30 \le l \le 30$
Reflections measured	172779
Independent reflections	28977 [R(int) = 0.0676]
Restraints applied/parameters refined	0 / 1194
Goodness-of-fit on <i>F</i> ²	1.030
Reflections with $I > 2\sigma(I)$	19693
Final <i>R</i> indeces $[I \ge 2\sigma(I)]$	$R_1 = 0.0488$, $wR_2 = 0.0992$
Final <i>R</i> indeces [all data]	$R_1 = 0.0882, wR_2 = 0.1187$
Residual electron density (ρ_{max}/ρ_{min}) [e Å ⁻³ / e Å ⁻³]	0.462 / -0.409
CCDC number	2078088

Fig. 9 General view of the first molecule of 14 in the unit cell. Anisotropic displacement parameters are drawn at 50% probability level.

Fig. 10 General view of the second molecule of 14 in unit cell. Anisotropic displacement parameters are drawn at 50% probability level.

Bond lengths	
Cage nitro groups	
N(1)–N(7) / N(18)–N(23)	1.4187(16) / 1.4534(15)
N(28)–N(34) / N(42)–N(47)	1.4155(15) / 1.3894(15)
N(2)–N(8) / N(17)–N(22)	1.3768(16) / 1.3929(15)
N(25)–N(31) / N(44)–N(49)	1.3676(16) / 1.4404(15)
N(3)–N(9) / N(16)–N(21)	1.3426(16) / 1.3992(15)
N(29)–N(35) / N(41)–N(46)	1.3836(15) / 1.4068(15)
N(4)–N(10) / N(15)–N(20)	1.4112(15) / 1.4115(16)
N(26)–N(32) / N(45)–N(50)	1.3729(15) / 1.3778(15)
N(5)–N(11) / N(19)–N(24)	1.4187(16) / 1.4086(16)
N(27)–N(33) / N(43)–N(48)	1.4162(15) / 1.3985(16)
Nitramine open-chain	
N(6)–C(7) / N(14)–C(8)	1.4724(16) / 1.4565(16)
N(30)–C(21) / N(40)–C(22)	1.4722(16) / 1.4633(16)
C(7)–N(12) / C(8)–N(12)	1.4495(17) / 1.4631(16)
C(21)–N(38) / C(22)–N(38)	1.4499(16) / 1.4643(16)
N(12)–N(13) (<i>Nitro group</i>) N(38)–N(39) (<i>Nitro group</i>)	1.3702(15)

Bond angles

Cage nitro groups	
N(7)–N(1)–C(1) / N(23)–N(18)–C(10) N(34)–N(28)–C(16) / N(47)–N(42)–C(25)	
N(7)–N(1)–C(3) / N(23)–N(18)–C(11) N(34)–N(28)–C(19) / N(47)–N(42)–C(24)	
N(8)–N(2)–C(2) / N(22)–N(17)–C(12) N(31)–N(25)–C(15) / N(49)–N(44)–C(26)	
N(8)–N(2)–C(5) / N(22)–N(17)–C(13) N(31)–N(25)–C(17) / N(49)–N(44)–C(27)	
N(9)–N(3)–C(1) / N(21)–N(16)–C(9) N(35)–N(29)–C(16) / N(46)–N(41)–C(25)	
N(9)–N(3)–C(4) / N(21)–N(16)–C(11) N(35)–N(29)–C(20) / N(46)–N(41)–C(23)	
N(10)-N(4)-C(2) / N(20)-N(15)-C(12) N(32)-N(26)-C(15) / N(50)-N(45)-C(26)	
N(10)–N(4)–C(6) / N(20)–N(15)–C(14) N(32)–N(26)–C(18) / N(50)–N(45)–C(28)	
N(11)-N(5)-C(3) / N(24)-N(19)-C(10)	
N(33)–N(27)–C(19) / N(48)–N(43)–C(24)	
N(11)–N(5)–C(5) / N(24)–N(19)–C(13)	
N(33)–N(27)–C(17) / N(48)–N(43)–C(27)	

118.04(11) / 113.24(10) 118.22(10) / 117.98(10)
117.10(11) / 111.15(10) 117.66(10) / 119.53(10)
120.35(11) / 117.39(10) 120.89(11) / 113.70(10)
120.47(11) / 120.45(10) 121.63(10) / 114.34(10)
124.02(11) / 118.05(10) 119.04(10) / 116.59(10)
124.06(11) / 117.27(10) 120.91(10) / 116.59(10)
115.81(10) / 115.47(10) 119.67(10) / 121.70(10)
115.56(10) / 116.12(10) 119.75(10) / 119.49(10)
113.44(11) / 118.23(11)

Nitramine open-chain

C(4)-N(6)-C(7)-N(12) / C(9)-N(14)-C(8)-N(12) (equat)/(axial)

C(6)-N(6)-C(7)-N(12) / C(14)-N(14)-C(8)-N(12)C(20)-N(30)-C(21)-N(38) / C(28)-N(40)-C(22)-N(38)

C(18)-N(30)-C(21)-N(38) / C(23)-N(40)-C(22)-N(38) (equat)/(axial)

Bond angles

Nitramine open-chain	
N(6)–C(7)–N(12) / N(14)–C(8)–N(12)	110.24(10) / 113.59(10)
N(30)–C(21)–N(38) / N(40)–C(22)–N(38)	110.52(10) / 112.89(10)
C(7)–N(12)–C(8)	124.73(11)
C(21)–N(38)–C(22)	123.13(10)
N(13)–N(12)–C(7) (<i>Nitro group</i>)	116.67(10)
N(39)–N(38)–C(21) (<i>Nitro group</i>)	116.60(10)
N(13)–N(12)–C(8) (<i>Nitro group</i>)	117.00(10)
N(39)–N(38)–C(22) (<i>Nitro group</i>)	116.54(10)
Torsion angles	
Cage nitro groups	
N(7)–N(1)–C(3)–C(4) / N(23)–N(18)–C(10)–C(9) (<i>axial</i>)/(<i>axial</i>)	119.22(12) / 100.89(11)
N(34)–N(28)–C(19)–C(20) / N(47)–N(42)–C(24)–C(23) (<i>axial</i>)/(<i>equat</i>)	120.74(11) / –169.01(11)
N(8)–N(2)–C(5)–C(6) / N(22)–N(17)–C(13)–C(14) (equat)/(equat)	175.12(11) / 169.47(11)
N(31)–N(25)–C(17)–C(18) / N(49)–N(44)–C(27)–C(28) (equat)/(axial)	178.69(11) / –106.84(11)
N(9)–N(3)–C(4)–C(3) / N(21)–N(16)–C(9)–C(10) (<i>middle</i>)/(<i>axial</i>) N(35)–N(29)–C(20)–C(19) / N(46)–N(41)–C(23)–C(24) (<i>axial</i>)/ (<i>axial</i>)	-145.72(13) / - 113.19(11) -121.06(11) / - 111.67(11)
N(10)–N(4)–C(6)–C(5) / N(20)–N(15)–C(14)–C(13) (axial)/(axial)	109.08(11) / 108.95(12)
N(32)–N(26)–C(18)–C(17) / N(50)–N(45)–C(28)–C(27) (axial)/ (axial)	122.79(11) / 124.13(11)
N(11)–N(5)–C(5)–C(6) / N(24)–N(19)–C(13)–C(14) (<i>axial</i>)/(<i>middle</i>)	83.31(13) / 154.50(11)
N(33)–N(27)–C(19)–C(20) / N(48)–N(43)–C(24)–C(23) (<i>axial</i>)/(<i>middle</i>)	–82.39(12) / –145.88(11)
N(11)-N(5)-C(3)-C(4) / N(24)-N(19)-C(10)-C(9) (axial)/(middle)	-81.15(13) / -153.52(10)
N(33)-N(27)-C(17)-C(18) / N(48)-N(43)-C(27)-C(28) (axial)/(middle)	83.39(12) / 144.27(11)

-163.07(10) / -

168.77(10) / -110.43(12) 62.68(14) / 106.43(13)

-60.00(13) / 114.66(12)

114.95(12)

Fig. 11 A general view of the molecular unit of **14**·2MeCN in crystal. Anisotropic displacement parameters are drawn at 50% probability level.

Fig. 12 A general view of the packing diagram of 14.2MeCN in crystal.

Fig. 13 Hirshfeld surface calculations, 2D fingerprint plots in crystal stacking and pie graph of percentage contributions of the individual atomic contacts to the Hirshfeld surface of 14.

Molecular surface electrostatic potentials (ESPs) for 10, 12, and 14.

–15 kcal·mol⁻¹

Fig. 14 Molecular surface electrostatic potentials (ESPs) for **10**. The ESP surface is divided into local electron-deficient (blue) and electron-rich (red) areas.

Fig. 15 Molecular surface electrostatic potentials (ESPs) for **12**. The ESP surface is divided into local electron-deficient (blue) and electron-rich (red) areas.

-15 kcal·mol-1

+40 kcal·mol-1

Fig. 16 Molecular surface electrostatic potentials (ESPs) for **14**. The ESP surface is divided into local electron-deficient (blue) and electron-rich (red) areas.

Measurements and calculations of enthalpies of combustion and formation for compounds 8–14

The combustion reactions of alkylnitramines 8-14 occurs acco	ording to Eq. (1) –
Eq. (7)	
$\begin{array}{c} C_7 H_9 N_{13} O_{12(cr)} + 3.25 \ O_{2(g)} \rightarrow 7 \ CO_{2(g)} + 4.5 \ H_2 O_{(l)} + 6.5 \ N_{2(g)}, \\ \textbf{8} \end{array}$	[Eq. (1)]
$\begin{array}{c} C_9H_{13}N_{15}O_{14(cr)} + 5.25 \ O_{2(g)} \rightarrow 9 \ CO_{2(g)} + 6.5 \ H_2O_{(I)} + 7.5 \ N_{2(g)}, \\ \textbf{9} \end{array}$	[Eq. (2)]
$\begin{array}{c} C_8 H_{11} N_{13} O_{12(cr)} + 4.75 O_{2(g)} \rightarrow 8 CO_{2(g)} + 5.5 H_2 O_{(I)} + 6.5 N_{2(g)}, \\ 10 \end{array}$	[Eq. (3)]
$\begin{array}{c} C_{10}H_{15}N_{15}O_{14(cr)} + 6.75 \ O_{2(g)} \rightarrow 10 \ CO_{2(g)} + 7.5 \ H_2O_{(l)} + 7.5 \ N_{2(g)}, \\ \textbf{11} \end{array}$	[Eq. (4)]
$\begin{array}{c} C_9 H_{13} N_{17} O_{14(cr)} + 5.25 O_{2(g)} \rightarrow 9 CO_{2(g)} + 6.5 H_2 O_{(I)} + 8.5 N_{2(g)}, \\ 12 \end{array}$	[Eq. (5)]
$\begin{array}{c} C_{11}H_{17}N_{19}O_{16(cr)} + 7.25 \ O_{2(g)} \rightarrow 11 \ CO_{2(g)} + 8.5 \ H_2O_{(l)} + 9.5 \ N_{2(g)}, \\ \textbf{13} \end{array}$	[Eq. (6)]
$\begin{array}{c} C_{14}H_{16}N_{24}O_{22(cr)}+7O_{2(g)}\rightarrow14CO_{2(g)}+8H_2O_{(I)}+12N_{2(g)},\\ 14 \end{array}$	[Eq. (7)]

where the subscripts cr, g, and I refer to crystalline, gaseous, and liquid states of the compounds, respectively.

The relationship between the enthalpies of formation and enthalpies of combustion of these compounds are presented by Eq. (8) – Eq. (14) taking into account the stoichiometry of reactions (1) - (7)

 $\Delta H_{\rm f} [C_7 H_9 N_{13} O_{12}](cr) = 7 \Delta H_{\rm f} [CO_2](g) + 4.5 \Delta H_{\rm f} [H_2 O](l) - \Delta H_{\rm comb}(\mathbf{8}),$ [Eq. (8)] 8 $\Delta H_{\rm f} \, [C_9 H_{13} N_{15} O_{14}]_{\rm (cr)} = 9 \, \Delta H_{\rm f} \, [CO_2]_{\rm (g)} + 6.5 \, \Delta H_{\rm f} \, [H_2 O]_{\rm (l)} - \Delta H_{\rm comb}(\mathbf{9}),$ [Eq. (9)] $\Delta H_{\rm f} \, [C_8 H_{11} N_{13} O_{12}]_{\rm (cr)} = 8 \, \Delta H_{\rm f} \, [CO_2]_{\rm (g)} + 5.5 \, \Delta H_{\rm f} \, [H_2 O]_{\rm (l)} - \Delta H_{\rm comb}(\mathbf{10}),$ [Eq. (10)] 10 $\Delta H_{\rm f} \, [C_{10}H_{15}N_{15}O_{14}]_{\rm (cr)} = 10 \, \Delta H_{\rm f} \, [CO_2]_{\rm (g)} + 7.5 \, \Delta H_{\rm f} \, [H_2O]_{\rm (l)} - \Delta H_{\rm comb}(\mathbf{11}),$ [Eq. (11)] 11 $\Delta H_{\rm f} \, [C_9 H_{13} N_{17} O_{14}]_{\rm (cr)} = 9 \, \Delta H_{\rm f} \, [CO_2]_{\rm (g)} + 6.5 \, \Delta H_{\rm f} \, [H_2 O]_{\rm (l)} - \Delta H_{\rm comb}(\mathbf{12}),$ [Eq. (12)] $\Delta H_{\rm f} \, [{\rm C}_{11}{\rm H}_{17}{\rm N}_{19}{\rm O}_{16}]_{\rm (cr)} = 11 \, \Delta H_{\rm f} \, [{\rm C}{\rm O}_{2}]_{\rm (g)} + 8.5 \, \Delta H_{\rm f} \, [{\rm H}_{2}{\rm O}]_{\rm (l)} - \Delta H_{\rm comb}(\mathbf{13}),$ [Eq. (13)] 13 $\Delta H_{\rm f} \, [C_{14}H_{16}N_{24}O_{22}]_{\rm (cr)} = 14 \, \Delta H_{\rm f} \, [CO_2]_{\rm (g)} + 8 \, \Delta H_{\rm f} \, [H_2O]_{\rm (l)} - \Delta H_{\rm comb}(\mathbf{14}),$ [Eq. (14)] 14 where $\Delta H_{f}[CO_{2}]_{(g)} = -94.051 \pm 0.031 \text{ kcal} \cdot \text{mol}^{-1}$ and $\Delta H_{f}[H_{2}O]_{(l)} = -68.315 \pm 0.009 \text{ kcal} \cdot \text{mol}^{-1}.^{15}$

Measurements of the enthalpies of combustion for **10**, **12**, and **14** were carried out on a precision automatic combustion calorimeter with an isothermal coating specifically developed for combustion of energetic compounds and are presented in tables 13–15. The mean square error of the measurements was 0.025%.

#	m² [g]	∆7 ^b [deg]	$egin{array}{ccc} Q_{meas}{}^c & q_a{}^d & q_i{}^e & q_N{}^f & q_{cot}{}^g & -\Delta U{}^a{}_B{}^h & [cal] & [cal] & [cal] & [cal] & [cal] g^{-1} \end{array}$							
1	0.069111	2.09903	1128.42	934.17	7.28	1.66	8.58	2557.2		
2	0.081565	2.23354	1200.73	973.47	7.27	1.94	9.75	2553.8		
3	0.083406	2.19459	1179.79	947.87	7.26	1.98	9.47	2556.3		
4	0.084217	2.22787	1197.68	964.52	7.29	2.01	8.96	2551.7		
5	0.068061	2.18772	1176.10	984.51	7.34	1.64	8.43	2559.2		
	$-\Delta U'_{\rm B}{}^{h} = 2555.6 \pm 3.4 {\rm cal} \cdot {\rm g}^{-1}$									
	$-\Delta H_{comb}^{i} = 1222.4 \pm 1.6 \text{ kcal} \cdot \text{mol}^{-1}$									

 $\Delta H_{\rm f}^{j}$ = 94.3 ± 1.6 kcal·mol⁻¹

 Table 13. Measurements of combustion energy of compound 10.

Table 14. Measurements of combustion energy of compo	bound 12 .
--	-------------------

#	m ^a [g]	\mathbf{m}^{a} $\Delta \mathcal{T}^{b}$ $\mathcal{Q}_{meas}{}^{c}$ $q_{a}{}^{d}$ $q_{i}{}^{e}$ $q_{N}{}^{f}$ $q_{cot}{}^{g}$ $-\Delta \mathcal{U}_{B}{}^{h}$ [g] [deg] [cal] [c											
1	0.084123	2.27646	1223.80	80 1003.29 7.29 1.86 8.02 2417.2									
2	0.085600	2.33077	1253.00	3.00 1027.66 7.31 1.88 9.29 2416.6									
3	0.081369	2.17507	1169.30	1169.30 954.80 7.28 1.82 8.62 2418.3									
4	0.082536	2.16970	1166.41	949.17 7.32 1.82 8.68 2416.									
5	0.083721	2.20237	1183.97	963.67	7.28	1.88	8.75	2417.5					
	$-\Delta U'_{\rm B}{}^{h} = 2417.1 \pm 0.2 {\rm cal} \cdot {\rm g}^{-1}$												
	$-\Delta H_{\rm comb}^{i}$ = 1400.6 ± 0.1 kcal·mol ⁻¹												
	$\Delta H_{i}^{j} = 110.1 \pm 0.1 \text{ kcal} \text{ mol}^{-1}$												

	Table	15. Measurer	nents of com	bustion energy	av of compound 1	4
--	-------	--------------	--------------	----------------	------------------	---

#	m ^a [g]	∆ <i>T^b</i> [deg]	$egin{array}{cc} egin{array}{cc} egin{array}{cc} egin{array}{cc} egin{array}{cc} eta_{a}^{d} & eta_{l}^{e} & eta_{N}^{f} & eta_{ ext{cot}}^{g} & -\Delta U_{B}^{h} \ & & & & & & & & & & & & & & & & & & $								
1	0.084158	2.19785	1181.54	181.54 961.36 7.27 1.96 9.70 2391.4							
2	0.082909	2.20372	1184.70	1184.70 968.23 7.19 1.92 9.36 2388.2							
3	0.081694	2.17286	1168.11	1168.11 954.80 7.25 1.90 9.22 2386.2							
4	0.079015	2.17835	1171.06 964.79 7.24 1.84 8.89 2383.1								
5	0.070624	2.17250	1167.91	979.85	7.29	1.64	10.07	2393.8			
	$-\Delta U'_{B}{}^{h} = 2388.5 \pm 4.8 \text{ cal} \cdot \text{g}^{-1}$										
	$-\Delta H_{\rm comb}^{i} = 2069.7 \pm 4.2 \ \rm kcal \cdot mol^{-1}$										
			$\Delta H_{\rm f}^{j}$ = 206.5 ± 4.2 kcal mol ⁻¹								

Note for the tables: ^a Sample mass of the test substance (measurement error $2 \cdot 10^{-6}$ g); ^b Corrected temperature rise in the calorimeter; ^c The amount of heat measured in experiment (see formula 1); ^d Heat release from the combustion of the auxiliary substance (benzoic acid, the value on a unit of mass 6322.6 ± 1.2 cal·g⁻¹); ^e Ignition energy; ^f Heat release from the nitric acid solution formation (the value on a unit of mass 1.38 cal·g⁻¹); ^g Heat release from the combustion of cotton thread (the value on a unit of mass measured in a series of seven experiments was 3968.9 ± 1.6 cal·g⁻¹); ^h Combustion energy of compound in a bomb is; ⁱ The standard enthalpy of combustion of the compound; ^j The standard enthalpy of formation of a compound.

The measured values were used to determine ΔH_f of compounds **10**, **12**, and **14** according to the standard scheme developed by S. M. Skuratov and V. P. Kolesov (M. V. Lomonosov Moscow State University).^{16, 17}

The amount of heat measured in experiment is obtained by the formula (1):

$$\boldsymbol{Q}_{\text{meas}} = \boldsymbol{W} \times \Delta \boldsymbol{T}^{-1}, \tag{1}$$

where *W* is the energy equivalent, which was measured in a series of six experiments and amounted to 537.59 ± 0.14 cal·deg⁻¹.

The combustion energy of compound in a bomb is:

$$-\Delta \boldsymbol{U}_{\rm B} = (\boldsymbol{Q}_{\rm meas} - \boldsymbol{q}_{\rm a} - \boldsymbol{q}_{\rm i} - \boldsymbol{q}_{\rm N} - \boldsymbol{q}_{\rm cot}) \times {\rm m}^{-1}. \tag{2}$$

And the enthalpy of combustion of the compound is:

$$-\Delta H_{\text{comb}} = -\Delta U'_{\text{B}} \times M + \pi \times \Delta U'_{\text{B}} + (n' - n) \times \mathbf{R} \times \mathbf{T}, \quad (3)$$

where *M* is the molar mass of the test substance, **n'** and **n** are the number of moles of gases, respectively, in the right and left sides of the chemical equation of combustion of one mole of a substance, **R** is the molar gas constant, *T* is the standard temperature (298 K) and **π** is the Washburn correction, which for compound $C_aH_bO_cN_d$ is calculated by the formula:

$$\pi = 0.3 \times P \times (-\Delta U_B / a)^{-1} \times \left[-1 + 1.1 \times \left(\frac{b - 2(c + d)}{4a} \right) - \frac{2}{P} \right]$$
(4),

where **P** is the initial pressure of oxygen in the bomb (30 atm); $-\Delta U_B / a$ is the heat of combustion of carbon contained in a combusted compound, kcal·(g·atom)⁻¹.

Based on these thermochemical data, the determination of ΔH_{comb} and ΔH_{f} for **11** and **13** was carried out by the additive method for calculating thermodynamic properties to S. W. Benson¹⁸ using the contributions of molecular fragments as well as Eq. (7) and Eq. (9), respectively.

High-temperature chemical equilibria thermodynamic calculations for compounds 8–14

Metal-free formulations of SCP with an «active» binder, a mixture of polyvinyl methyl tetrazole with nitroglycerin and a phlegmatizer (Act-bnd, C_{18.96}H_{34.64}N_{19.16}O_{29.32}; $\Delta H_{\rm F} = -757$ kJ·kg⁻¹; d = 1.49 g·cm⁻³)¹⁹ in an amount corresponding to 19% by volume and the rest is a mixture of AP with the material under study (CL-20 or **8–14**) by varying the ratio of these HEDMs to AP were considered. The specific impulse $I_{\rm sp}$ (at pressures of 4.0 and 0.1 MPa in the combustion chamber and at the nozzle exit, respectively) and the combustion temperature $T_{\rm comb}$ were determined using the standard code TERRA²⁰ for high-temperature chemical equilibria calculation. The results of calculation with varying of the content of the organic energetic component are presented in table 16 and Fig. 17, 18.

Fig. 17 The dependence of I_{sp} on the kind of HEDM (**8–14** and CL-20) and its percentage in the SCP formulations containing 19 vol.% (15–16 wt.%) Active binder, organic energetic component, and AP.

Table 16 The I_{sp} values and other energetic parameters that can be achieved using SCP containing 19 vol.% (15.0–15.8 wt.%) Active binder, 34.4–39.8 wt.% AP and HEDM **8–14** or CL-20.

organic c	omponent	act-bnd ^a	AP ^b	ď	T_{comb}^{d}	I _{sp} ^e
Туре	w.%	[w.%]	[w.%]	[g∙cm ⁻³]	[K]	[s]
	74.54	15.46	10	1.828	3315	252.1
	64.58	15.42	20	1.832	3310	252.0
	59.60	15.4	25	1.835	3300	251.6
	54.62	15.38	30	1.837	3285	251.0
8	49.64	15.36	35	1.839	3260	249.9
	44.66	15.34	40	1.842	3230	248.3
	39.68	15.32	45	1.844	3185	245.7
	34.70	15.3	50	1.846	3130	242.1
	74.29	15.71	10	1.804	3160	247.2
	64.35	15.65	20	1.812	3215	248.7
	59.38	15.62	25	1.816	3230	249.2
0	54.42	15.58	30	1.820	3240	249.4
9	49.46	15.54	35	1.823	3230	249.2
	44.50	15.5	40	1.827	3220	248.7
	39.54	15.46	45	1.831	3190	247.3
	34.58	15.42	50	1.835	3150	244.7
	74.25	15.75	10	1.798	3180	248.2
	64.30	15.7	20	1.806	3230	249.6
10	59.30	15.70	25	1.810	3250	250.0
10	54.35	15.65	30	1.815	3255	250.1
	49.40	15.60	35	1.819	3250	249.9
	44.45	15.55	40	1.823	3233	249.3
	39.50	15.50	45	1.828	3200	248.0
	74.00	16.00	10	1.771	3010	243.3
	64.10	15.90	20	1.782	3120	245.9
	54.20	15.80	30	1.794	3190	247.8
11	49.25	15.75	35	1.800	3200	248.4
	44.30	15.70	40	1.806	3210	248.4
	39.35	15.65	45	1.812	3200	247.9
	37.40	15.60	47	1.815	3180	247.5
	34.40	15.60	50	1.818	3160	246.5
	74.26	15.74	10	1.798	3160	246.4
	64.32	15.68	20	1.806	3215	248.0
12	54.38	15.62	30	1.815	3234	248.8
	49.41	15.59	35	1.819	3230	248.7
	44.44	15.56	40	1.823	3210	248.1
	39.47	15.53	45	1.827	3180	246.7
	73.85	16.15	10	1.757	3020	242.4
	63.95	16.05	20	1.771	3120	245.2
13	54.07	15.93	30	1.784	3185	247.0
	49.14	15.86	35	1.791	3200	247.5
	44.21	15.79	40	1.798	3200	247.6
	39.25	15./5	45	1.805	3180	247.0
	74.14	15.86	10	1.791	3305	251.1
	64.24	15.76	20	1.800	3310	251.4
1.4	59.29	15./1	25	1.805	3310	251.3
14	54.34	15.66	30	1.809	3295	250.9
	49.39	15.61	35	1.814	3270	250.1
	44.44	15.50	40	1.819	3245	248.8
	37.47 75 35	12.31	45	1.024	2400	240./
	15.25	14./5	20 TU	1.912	3400	203.9
	65.10	14.9	20	1.905	3350	251./
CL 20	6U.U5	14.95	25	1.901	3320	250.3
LL-20	55.05	14.95	30	1.898	3280	248.5
		15.00	35	1.095	324U 2200	240.3 212 c
	40.00	15.00	40	1 888	3200	243.0
	40.00	13.00	40	1.000	5140	240.3

^a Active binder. ^b Ammonium perchlorate. ^c Density of composition. ^d Temperature in the combustion chamber. ^e Specific impulse.

Fig. 18 A series of the relative efficiency of the studied energetic components at the maximum I_{sp} values of the SCP compositions containing 19 vol.% Active binder, AP, and HEDM **10–14** or CL-20 at 55 (a), 50 (b) and 45 (c) w.%

Explosive performance of compounds 8–14

Compd	Formula	α ^a	H% ^b	T _{dec} c [°C]	<i>d</i> ^d [g·cm ^{−3}]	∆ <i>H</i> f ^e [kJ·kg ^{−1} (kJ·mol ^{−1})]	IS ^g [J]	FS ^g [N]	D _v ^h [km·s ^{−1}] ^[e]	<i>Р</i> _{С-Ј} ^h [GPa] ^[e]	Q _v ^h [MJ·kg⁻¹]
8	C7H9N13O12	0.65	1.94	195 ⁱ	1.901	+807 (+377) ^f	-	-	9.16	40.0	6.28
9	$C_9H_{13}N_{15}O_{14}$	0.57	2.36	208 ⁱ	1.869	+643 (+357) ^f	_	_	9.07	38.2	6.12
10	C8H11N13O12	0.56	2.30	222°	1.848	+821 (+395)	6.1	180	9.06	37.8	6.22
11	$C_{10}H_{15}N_{15}O_{14}$	0.51	2.66	197 ⁱ	1.822	+620 (+353)	_	_	8.94	35.5	6.03
12	$C_9H_{13}N_{17}O_{14}$	0.57	2.25	203 ^c	1.846	+791 (+461)	4.3	180	9.04	37.9	6.01
13	$C_{11}H_{17}N_{19}O_{16}$	0.52	2.55	178 ⁱ	1.804	+626 (+420)	_	_	8.85	34.7	5.87
14	$C_{14}H_{16}N_{24}O_{22}$	0.61	1.85	223°	1.921	+992 (+865)	8.0	150	9.22	40.7	6.36
RDX ^j	$C_3H_6N_6O_6$	0.67	2.72	203 ^{<i>k</i>}	1.799	+301 (+67)	7.5	120	8.96	36.2	6.17
HMX ^j	$C_4H_8N_8O_8$	0.67	2.70	280 ^k	1.897	+255 (+76)	7.0	112	9.21	40.3	6.15
CL-20 ^j	$C_6H_6N_{12}O_{12}$	0.80	1.37	229 ^k	2.021	+833 (+365)'	4.0	48	9.42	45.6	6.52

Table 17 Physicochemical and explosive properties of 8–14 in comparison with RDX, HMX, and CL-20.

^a Oxygen coefficient. For a compound with the molecular formula CxHyNwOz, $\alpha = z/(2x+y/2)$. ^b Hydrogen content. ^c Extrapolated decomposition onset temperature at a heating rate of 5 °C·min⁻¹ (DSC). ^d Density measured using a gas pycnometer at room temperature. ^e Standard enthalpy of formation determined by the method of combustion calorimetry. ^f Calculated enthalpy of formation. ^g The impact and friction sensitivity determined by BAM method using the STANAG standards. ^h Detonation parameters: velocity, pressure and heat calculated with S&DV4.5 code. ⁱ Decomposition temperature at a heating rate of 5 °C·min⁻¹ (observed on Kofler's table) ^j Ref.²¹. ^k Ref.²²

References

- 1. M. C. Pirrung, The Synthetic Organic Chemist's Companion, John Wiley & Sons, New Jersey, 2007.
- 2. E. A. Miroshnichenko, T. S. Kon´kova, Y. O. Inozemtsev, Y. N. Matyushin and E. B. Tushev, *Combust. Explos.*, 2011, **4**, 294–297.
- 3. Standardization Agreement 4489 (STANAG 4489), Explosives, Impact Sensitivity Tests, NATO, Brussels, 1999.
- 4. Standardization Agreement 4487 (STANAG 4487), Explosives, Impact Sensitivity Tests, NATO, Brussels, 2002.
- 5. A. J. Bellamy, A. MacCuish, P. Golding and M. F. Mahon, *Propellants, Explos., Pyrotech.*, 2007, **32**, 20–31.
- 6. R. C. Brian and A. H. Lamberton, J. Chem. Soc., 1949, 1633–1635.
- 7. A. Hantzsch and W. V. Metcalf, Ber. Dtsch. Chem. Ges., 1896, 29, 1680–1685.
- 8. C. B. Aakeroy, T. K. Wijethunga and J. Desper, Chem.-Eur. J., 2015, 21, 11029-11037.
- 9. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3-8.
- 10. CrysAlisPro. Version 1.171.41.106a, Rigaku Oxford Diffraction, 2021.
- 11. G. M. Sheldrick, Sect. C: Struct. Chem., 2015, 71, 3–8.
- 12. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.* 2009, **42**, 339-341.
- 13. Bruker. APEX-III, Bruker AXS Inc., Madison, Wisconsin, USA, 2019.
- 14. L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, J. Appl. Cryst., 2015, 48, 3–10.
- 15. J. D. Cox, D. D. Wagman and V. A. Medvedev, *CODATA key values for thermodynamics*, Hemisphere Publ. Corp., New York, 1989.
- 16. S. M. Skuratov, V. P. Kolesov and A. F. Vorobiev, *Thermochemistry*, Moscow University, Moscow, 1966.
- 17. D. R. Stull, E. F. Westrum and G. C. Sinke, *Chemical thermodynamics of organic compounds*, John Wiley & Sons, New York, 1969.
- 18. N. Cohen and S. W. Benson, *Chem. Reviews*, 1993, **93**, 2419–2438.
- 19. D. B. Lempert, G. N. Nechiporenko and G. B. Manelis, Centr. Eur. J. Energ. Mater., 2006, 3, 73–87.
- 20. B. G. Trusov, presented in part at the XIV International Symposium on Chemical Thermodynamics, St-Petersburg, 1–5 July, 2002.
- 21. R. Meyer, J. Kohler and A. Homburg, *Explosives*, Wiley-VCH, Weinheim, 7th edn., 2016.
- 22. N. V. Muravyev, D. B. Meerov, K. A. Monogarov, I. N. Melnikov, E. K. Kosareva, L. L. Fershtat, A. B. Sheremetev, I. L. Dalinger, I. V. Fomenkov and A. N. Pivkina, *Chem. Eng. J.*, 2021, **412**, 128697.
- 23. Q. Lang, Q. Sun, Q. Wang, Q. Lin and M. Lu, J. Mater. Chem. A, 2020, 8, 11752–11760.