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Discussion S1: Calculation of the weight of carbon formed in the discharge 

process.

The calculation assumes that all the applied current is used to reduce CO2 to C. Thus, 

the weight of carbon formed in the discharge process can be described by the following 

equation:

𝑊𝐶 =
𝑄 × 𝑊𝐶𝑎𝑡ℎ𝑜𝑑𝑒 × 3.6( 𝐶

𝑚𝐴ℎ) × 𝑀

𝑛 × 𝐹

 is the weight of formed C (g), Q is the discharge capacity (mAh gc
−1),  is 𝑊𝐶 𝑊𝐶𝑎𝑡ℎ𝑜𝑑𝑒

the weight of cathode (g), n is the number of electron transfer in the cell equation  

(Equation 2) and is equal to 4, and F is the Faraday constant (C mol−1, 96485 C mol−1).

 is the molecular weight of carbon which is 12 (Da). 𝑀

 

Discussion S2: Calculation of the effect of trace O2.

The amount of O2 required for the reaction can be calculated using the following 

equation:

𝑉𝑂2 =
𝑊𝑂2

𝐷𝑂2

=
𝑄 × 𝑊𝐶𝑎𝑡ℎ𝑜𝑑𝑒 × 3.6( 𝐶

𝑚𝐴ℎ)
𝑛 × 𝐹 × 𝐷𝑂2

 is the volume of O2 (L),  is the weight of O2 (g),  is the density of O2 (g 
𝑉𝑂2

𝑊𝑂2
𝐷𝑂2

L−1, NTP value = 1.331 g L−1), Q is the discharge capacity (mAh g−1),  is the 𝑊𝐶𝑎𝑡ℎ𝑜𝑑𝑒

weight of cathode (g), n is the number of electron transfer in the cell equation (Equation 

6) and is equal to 2, and F is the Faraday constant (C mol−1, 96485 C mol−1).



Discussion S3: Derivation of the redox potential of mixed 

electrochemical/chemical reaction.

If a given reaction

A + Y + ne− → Z, Δ𝐺𝑡𝑜𝑡 =‒ 𝑛𝐹𝐸𝑡𝑜𝑡

can be divided into n+1 individual elemental steps:

A + e− → B, Δ𝐺1 =‒ 𝐹𝐸1

B + e− → C, Δ𝐺2 =‒ 𝐹𝐸2

⋮

W + e− → X, Δ𝐺𝑛 =‒ 𝐹𝐸𝑛

X + Y → Z, Δ𝐺𝑐

We have the following equation:

Δ𝐺𝑡𝑜𝑡 = Δ𝐺1 + Δ𝐺2 + ⋯ + Δ𝐺𝑛 + Δ𝐺𝑐

‒ 𝑛𝐹𝐸𝑡𝑜𝑡 =‒ 𝐹𝐸1 ‒ 𝐹𝐸2 ‒ ⋯ ‒ 𝐹𝐸𝑛 + Δ𝐺𝑐

𝐸1 + 𝐸2 + ⋯ + 𝐸𝑛 =
1
𝐹

Δ𝐺𝑐 + 𝑛𝐸𝑡𝑜𝑡

Since  needs to be negative for a chemical reaction to occur spontaneously, the Δ𝐺𝑐

inequality can be written as

𝐸1 + 𝐸2 + ⋯ + 𝐸𝑛 < 𝑛𝐸𝑡𝑜𝑡

For the total reaction to happen, the potential needs to be lower than the smallest one 

among all . Thus, for a mixed electrochemical/chemical reaction, the highest reaction 𝐸𝑥

potential can be obtained only when all  share the same value and that . Note 𝐸𝑥 Δ𝐺𝑐→0

that in the demonstrated reaction, Y represents the species that participate chemically 

in the reaction. The individual elementary steps can be in any given order, and the 

derivation can still hold.
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Fig. S1 (a) Raman spectra of a gold cathode measured under different laser power in a 

Li–CO2 battery. (b) Optical image of the gold mesh after illumination under 50 mW-

laser.
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Fig. S1
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Fig. S2 (a) Cyclic voltammetry (CV) tests and (b) statistics on the full-discharge 

capacity of Li–gas batteries under three different gas atmospheres. Carbon nanotubes 

coated on stainless steel mesh (CNTs/SS) were used as working electrodes and cathode, 

respectively, in both tests.
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Fig. S3 (a) X-ray diffraction (XRD) patterns of cathode materials. (b) Full-discharge 

capacities of Li–CO2 batteries with three different cathodes. The galvanostatic full-

discharge tests are all performed with a current density of 100 mA g−1 and a cutoff 

potential of 2 V.
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Fig. S4 Full-discharge capacities of Li–CO2 batteries with five different cathodes. For 

Pt/SS and Ru/SS, the current density is 15 mA g−1 to obtain considerable capacity. The 

rest of the galvanostatic full-discharge tests are all performed with a current density of 

100 mA g−1 and a cutoff potential of 2 V.
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Fig. S5 SEM images of (a) pristine CNTs, (b) 2V-CNTs, (c) 1V-CNTs, (d) pristine Pt, 

(e) 2V-Pt, (f) 1V-Pt, (g) pristine MoS2/CNT, (h) 2V-MoS2/CNT, (i) 1V-MoS2/CNT, (j) 

pristine Mo2C, (k) 2V-Mo2C, (l) 1V-Mo2C, (m) pristine NiO/CNT, (n) 2V-NiO/CNT, 

and (o) 1V-NiO/CNT electrodes.

The SEM images of discharged cathodes show clear evidence of products formation. 

While the 2V-samples show a relatively small amount of formed species, the 1V-

samples are covered with largely formed products. The clear formation of the products 

upon pristine electrode structures allows further characterization with ease.
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Fig. S2
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Fig. S6 Soft X-ray absorption spectroscopy (SXAS) profiles of (a) Li2CO3 and (b) 

Li2CO3/carbon black mixture with a molar ratio of 2:1.
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Fig. S4
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Fig. S7 Raman spectra of (a) Pt/SS with different treatments and (b) Ru/SS after 

discharge. 532 nm laser was used as the excitation source for all measurements. 
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Fig. S8 Soft X-ray absorption spectra (SXAS) of (a) Ru-CNT/SS, (b) Ru/SS, (c) MoS2-

CNT, (d) Mo2C, and (e) NiO-CNT cathodes under different treatments. The inset of (a) 

shows the magnification of the framed region.

In Fig. S8a, Ru decorated carbon nanotubes coated on stainless steel mesh (Ru-

CNT/SS) are used as cathodes to conduct discharge tests above 2 V. The SXAS results 

resemble the ones in Fig. 1c. Li2CO3 is again formed on the discharged Ru-CNT/SS 

(brown curve) and can be completely removed after H2O washing treatment (red curve). 

When stacking SXAS profiles of H2O-washed and pristine Ru-CNT/SS, the difference 

can hardly be found, showing that no carbon is formed after discharge. In Fig. S8b, Ru 

sputtered stainless steel mesh (Ru/SS) is prepared to reproduce the work done by Yang 

et al.2 The small peak at around 285 eV in the pristine sample (green curve) is 

contributed by the 3d to 5p transition (M4 edge) of Ru. It may be difficult to decide the 

peak is generated by carbon or Ru simply by the peak position. However, we can still 

tell whether C is formed through the intensity of the peak at around 285 eV. When 

comparing pristine Ru/SS and C@Ru (blue curve), the intensity of the peak is clearly 

enhanced when carbon presents. Thus, it would be clear when focusing on the 1s to π* 

transition around 285 eV. 
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Fig. S9 Full-discharge capacities of Li–CO2 batteries with five different cathodes. For 

Pt/SS and Ru/SS, the current density is 15 mA g−1 to obtain considerable capacity. The 

rest of the galvanostatic full-discharge tests are all performed with a current density of 

100 mA g−1 and a cutoff potential of 1 V.
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Fig. S10 Soft X-ray absorption spectra of (a) Ru/SS, (b) MoS2-CNT, (c) Mo2C, and (d) 

NiO-CNT under different treatments

The overall trend of SXAS profiles of Ru/SS resembles that of Pt/SS. However, there 

is a small peak located at around 285 eV for that of pristine Ru/SS. This peak can be 

attributed to the transition of 3d to 5p transition (M4 edge) of Ru. It may be hard to 

distinguish whether the peak at 285 eV is contributed by carbon or Ru through the peak 

position. Nevertheless, we can still tell the formation of carbon through the peak 

intensity. By comparing the SXAS profiles of pristine Ru/SS and C@Ru can we 

observe a clear peak by carbon. Carbon is thus not observed in the discharged Ru/SS 

cathodes. The rest of the spectra show high similarity to one of the other. High-intensity 

peaks of Li2CO3 can be observed in all discharged cathodes, while no significant peak 

is contributed by newly formed carbon. Washing away the formed Li2CO3, the profiles 

of washed cathodes resemble the pristine ones, which again show the absence of 



carbon.



Fig. S11 Specially designed bottle for electrochemical tests of Li–gas batteries.

Li–gas batteries could be placed in the battery holder inside the bottle. When filling the 

gas into the glass bottle, the long hollow tube served as an inlet of the gas. A pinhole 

on the shorter tube was drilled near the bottle cap that enabled the gas inside the bottle 

to be purged out. After filling the bottle with the desired gas, wires could be connected 

to the tubes for further electrochemical tests.



Fig. S12 Galvanostatic full-discharge tests of Li–CO2 batteries with different current 
densities. CNTs/SS were used as cathodes in both batteries.6/29/2021 小組報告 13/22
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Fig. S13 (a) Gas chromatograms (GC) of the atmosphere of pristine test bottle and 

discharged Li–CO2 batteries under different current densities. MS spectra of the 

detected peaks in (a) for current densities of (b) 25 and (c) 50 mA g−1.
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HCOOLi CH3COOLi

Fig. S14 Nuclear magnetic resonance (NMR) spectra of the electrolyte discharged to 1 

V in Li–CO2 battery, where the peaks of side products (HCOOLi and CH3COOLi) can 

be clearly observed.
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Fig. S15 Nuclear magnetic resonance (NMR) spectrum of the electrolyte discharged to 

2 V in Li–O2 battery. No side products (i.e. HCOOLi and CH3COOLi) are observed in 

the spectrum.3
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Fig. S16 Galvanostatic discharge tests of Li–CO2 batteries using CNTs/SS under 

different contents of water. 

Electrolytes with 1000 and 2000 ppm H2O were used in the discharge tests of Li–CO2 

batteries. Saturated moisture was obtained by adding excess H2O into the testing bottle.
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