Electronic Supplementary Information

Super strong, shear resistant, and highly elastic lamellar structured ceramic nanofibrous aerogels for thermal insulation

Xin Zhang,^{‡a} Cheng Liu,^{‡a} Xinxin Zhang,^a Yang Si,^{*ab} Jianyong Yu,^{ab} and Bin Ding^{*ab}

^aState Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China.

^bInnovation Center for Textile Science and Technology, Donghua University, Shanghai

200051, China.

‡X. Zhang and C. Liu contributed equally to this work.

*E-mail: yangsi@dhu.edu.cn; binding@dhu.edu.cn

Supplementary Materials

Fig. S1 The measurement of shear mechanical properties was performed by using a TA-Q850 DMA instrument with a shear sandwich clamp.

Fig. S2 Fabrication of electrospun SiO₂ nanofibrous membrane. SEM images of (a) PVA/SiO_2 hybrid nanofibers, (b) SiO₂ nanofibers, and the cross section of (c) SiO₂ nanofibrous membrane. Inset in b: optical image of SiO₂ nanofibrous membrane showing outstanding softness. Diameter distribution histogram of (d) PVA/SiO₂ hybrid nanofibers, and (e) SiO₂ nanofibers. Thickness distribution histogram of (f) SiO₂ nanofibrous membrane.

Fig. S3 (a-c) Microscopic morphologies of SNFAs at different magnifications showing the nanofibrous lamellar multi-arch structure.

Fig. S4 Fresh flower was protected by a piece of aerogel with a thickness of 10 mm from withering or carbonization in the flame of butane blowlamp after (a) 2 min and (b) 5 min.

Fig. S5 (a-d) SEM images of SNFAs after treatment at 1000, 1100, 1200 and 1300 °C for 60 min.

Fig. S6 Thermal conductivities of the SNFA-0.1, SNFA-0.5, SNFA-1, SNFA-2, and SNFA-5 at room temperature, repectively.