Supporting Information for

A High-voltage Solar Rechargeable Device Based on a CoPi/BiVO₄ Faradaic Junction

Junzhe Zhang¹[†], Dongjian Jiang¹[†], Pin Wang², Jun Zhong³, Gengzhi Sun⁴, Yingfang Yao¹, Wenjun Luo¹*, Zhigang Zou^{1,2}

¹National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China

²Eco-materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China

³Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China

⁴Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China

[†]These authors contributed equally to this work. *Email: wjluo@nju.edu.cn;

Experimental section

Preparation of BiVO₄ electrode

Following previous method ^[1], Bi layers were firstly electro-deposited on FTO substrates in 20 mM Bi(NO₃)₃·5H₂O ethylene glycol solution. The deposition was carried out by i-t method at the potential of -1.8 V vs. Ag/AgCl and the deposition charge was 300 mC/cm². After electrodeposition, the Bi films were washed by ethanol and dried in air. And then 150 mM VO(acac)₂ in DMSO was dropped on the surface of Bi electrodes, which were calcined in a muffle furnace at 450 °C for 2 hours in air (heating rate = 2 °C/min). In the muffle furnace, Bi and VO²⁺ were oxidized and reacted with each other to form BiVO₄. Finally, residual V₂O₅ in the BiVO₄ films was removed by soaking the samples in 1 M NaOH aqueous solution for 30 minutes.

Preparation of CoPi, CoO_xH_y, Co(OH)₂ and Co₃O₄

CoPi samples were electro-deposited on FTO substrates at the potential of 1.1 V vs. Ag/AgCl in 1 M potassium phosphate buffer (pH=7) solution with adding 0.5 mM $Co(NO_3)_2$ and the deposition charge was 100 mC/cm². CoO_xH_y samples were electro-deposited on FTO substrates at the potential of -0.8 V vs. Ag/AgCl in 0.1 M $Co(NO_3)_2$ aqueous solution and the deposition charge was 100 mC/cm². Then CoO_xH_y film was oxidized at the potential of 1.2 V vs. Ag/AgCl in 0.5 M Na₂SO₄ aqueous solution for 1 minute. $Co(OH)_2$ samples were grown on FTO substrates by chemical bath deposition method at 100 °C for 12 hours. The precursor solution was 0.1 M $Co(NO_3)_2$ and 0.5 M $CO(NH_2)_2$ aqueous solution. In order to obtain Co_3O_4 , the as-grown $Co(OH)_2$ films were annealed in a muffle furnace at 500 °C in air for 5 minutes.

Preparation of CoPi/BiVO₄ and CoO_xH_y/BiVO₄

The CoPi and CoO_xH_y were electro-deposited on BiVO₄ on the same conditions as on FTO substrates as mentioned above, but the deposition charge was 20 mC/cm².

Assembly of solar rechargeable devices

CoPi/BiVO₄ or CoO_xH_y/BiVO₄ were used as photoelectrodes and commercial carbon cloth (Taiwan Carbon Energy Technology, W0S1002) was used as counter electrode. The electrolytes were 1 M potassium phosphate buffer solution (pH=7) and 0.5 M Na₂SO₄ aqueous solution, respectively. The two solar rechargeable devices were marked as BiVO₄/CoPi/KPi_(aq)/C and BiVO₄/CoO_xH_y/Na₂SO_{4(aq)}/C, respectively.

Characterizations of samples

The morphologies of the samples were characterized by SEM (ZEISS Gemini 300) with an accelerating voltage of 10 kV. The TEM (JEOL JEM-2100), XRD (ARL X'TRA) and Raman spectroscopy (Horiba T64000, excitation ~ 488 nm) were employed to investigate the structures of the samples. The absorbance of the samples was measured by ultraviolet-visible-near infrared spectroscopy (UV-Vis-NIR, PE Lambda 950). The chemical valence of the samples was characterized by X-ray photoelectron spectroscopy (XPS, PHI5000 Versa Probe). The binding energies were calibrated by the C1s peak at 284.6 eV. X-ray absorption spectroscopy (XAS) experiments were performed at the National Synchrotron Radiation Laboratory (NSRL, Beamlines MCD- A and MCD-B (Soochow Beamline for Energy Materials).

Electrochemical and photoelectrochemical measurements

The electrochemical and photoelectrochemical properties of the samples were measured in a three-electrode system. A Pt electrode and Ag/AgCl were used as a counter electrode and a reference electrode, respectively. For CoPi/FTO and CoPi/BiVO₄ samples, 1 M potassium phosphate buffer solution (pH=7) was used as electrolyte. For CoO_xH_y/FTO, CoO_xH_y/BiVO₄, Co(OH)₂/FTO and Co₃O₄/FTO, 0.5 M Na₂SO₄ aqueous solution was used as electrolyte. The performance of solar rechargeable devices was measured by using a two-electrode system. All electrochemical and photoelectrochemical curves were recorded by the electrochemical workstation (CHI 760e, Shanghai Chenhua). An AM1.5 sunlight simulator with the intensity of 100 mW cm⁻² was used as the light source.

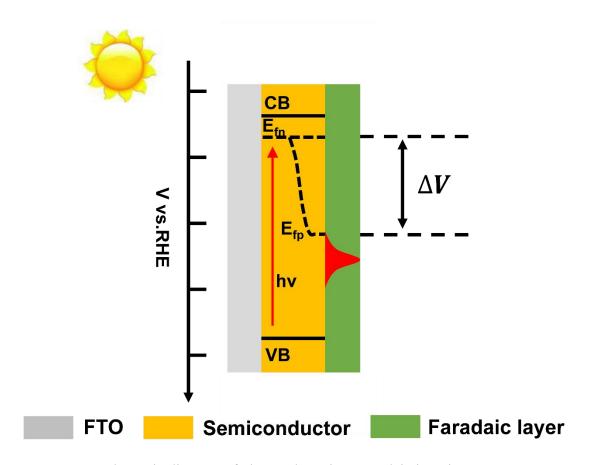


Figure S1. Schematic diagram of photovoltage in a Faradaic junction.

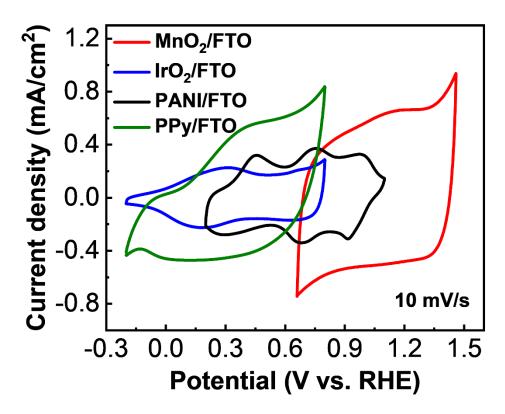


Figure S2. Potential windows of some conventional Faradaic materials.

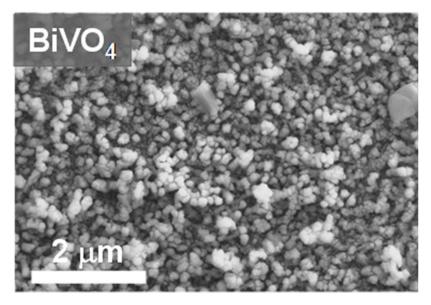


Figure S3. SEM image of bare BiVO₄ on a FTO substrate.

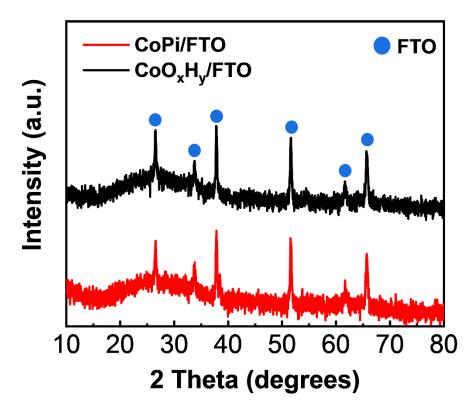


Figure S4. XRD patterns of CoPi/FTO and CoO_xH_y/FTO.

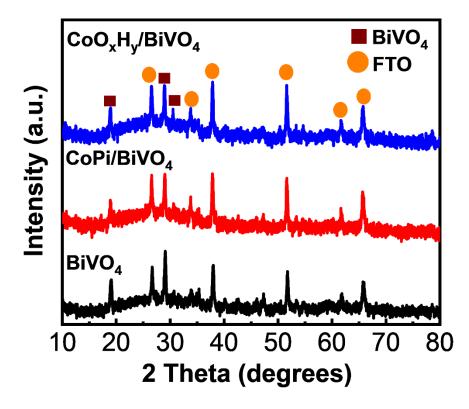
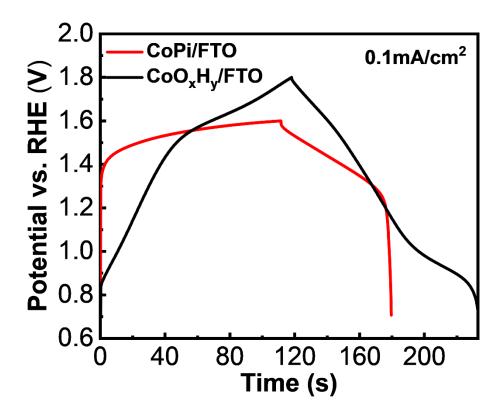



Figure S5. XRD patterns bare BiVO₄, CoPi/BiVO₄, CoO_xH_y/BiVO₄.

Figure S6. GCD curves of CoPi/FTO in 1M potassium phosphate buffer solution (pH=7) and CoO_xH_y/FTO in 0.5 M Na₂SO₄ aqueous solution, respectively.

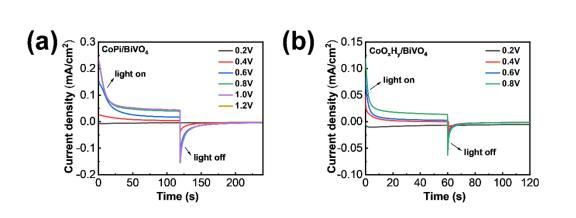


Figure S7. Current-time curves of CoPi/BiVO₄ in 1M potassium phosphate buffer solution (pH=7) and CoO_xH_y/BiVO₄ in 0.5 M Na₂SO₄ aqueous solution, respectively.

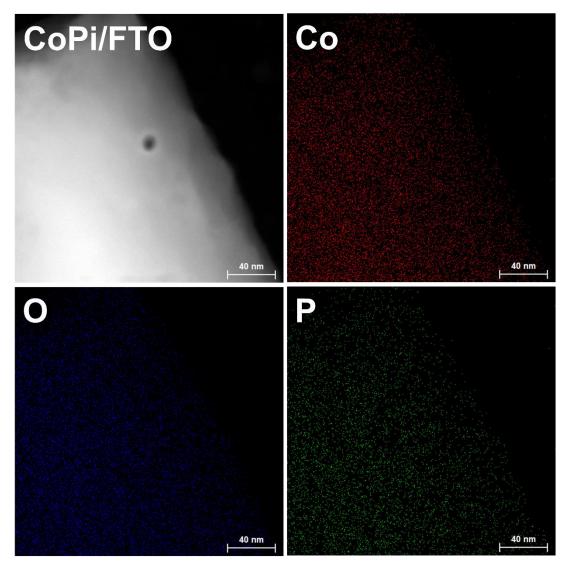


Figure S8. Elemental mappings in a dark-field TEM image of CoPi/FTO.

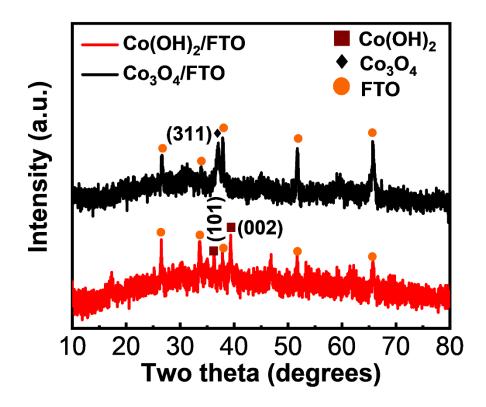


Figure S9. XRD patterns of Co(OH)₂/FTO and Co₃O₄/FTO.

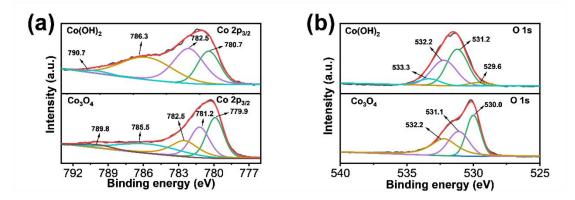


Figure S10. XPS of Co(OH)₂/FTO and Co₃O₄/FTO.

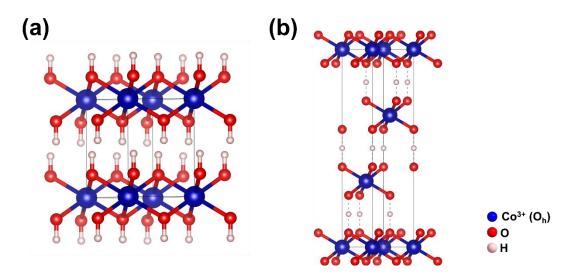
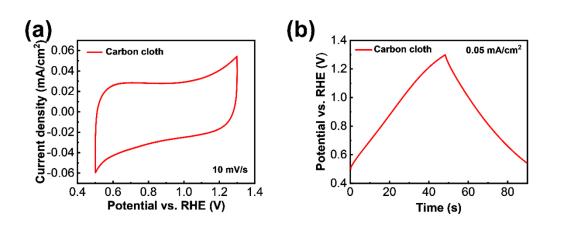
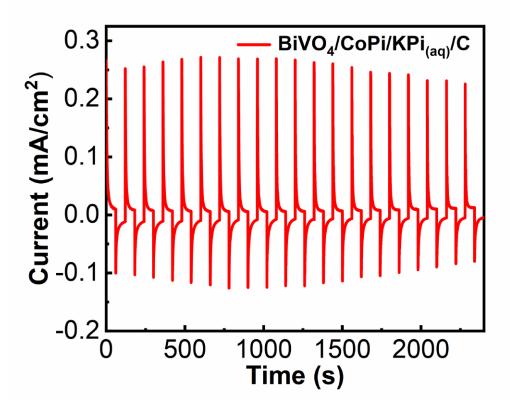




Figure S11. Crystal structures of Co(OH)₂ (a) and CoOOH (b).

Figure S12. CV curve and GCD curve of a carbon cloth counter electrode in the dark, electrolyte: 1 M potassium phosphate buffer solution (pH=7).

Figure S13. Cyclic stability of the BiVO₄/ CoPi/KPi_(aq)/C full-cell during photo charge and dark discharge under zero bias.

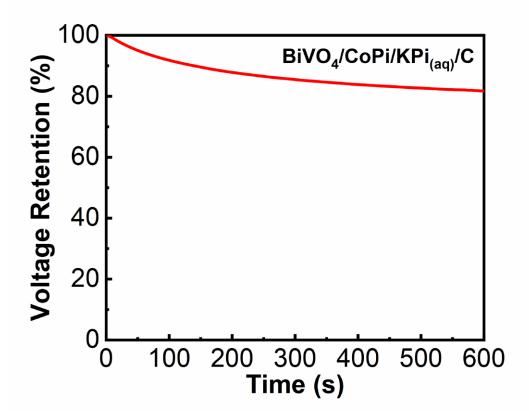


Figure S14. OCP stability of the BiVO₄/CoPi/KPi_(aq)/C device in the dark.

and previous inclatures.			
	Different configurations of two-electrode devices	Dark output voltage (V)	Ref.
1	TiO ₂ -dye-LiI/AC/ Polymer electrolyte/AC/Pt	0.45	[2]
2	TiO ₂ /NiO/Na ₂ SO ₄ (aq)/Pt/Si	0.45	[3]
3	Si/Porous Si/Polymer electrolyte/Porous Si	0.55	[4]
4	BiVO ₄ /PbO _x /NaPi(aq)/Pt	0.65	[5]
5	Si/WO ₃ /H ₂ SO ₄ (aq)/C	0.50	[6]
6	BiVO4/CoPi/KPi(aq)/C	0.88	this work

Table S1 The output voltage of two-electrode solar rechargeable devices in this study and previous literatures.

References

- D. Kang, Y. Park, J. C. Hill and K. S. Choi, J. Phys. Chem. Lett., 2014, 5, 2994-2999.
- [2] T. Miyasaka and T. N. Murakami, Appl. Phys. Lett., 2004, 85, 3932-3934.
- [3] Y. Wang, J. Tang, Z. Peng, Y. Wang, D. Jia, B. Kong, A. A. Elzatahry, D. Zhao and G. Zheng, *Nano Lett*, 2014, 14, 3668-3673.
- [4] A. S. Westover, K. Share, R. Carter, A. P. Cohn, L. Oakes and C. L. Pint, *Appl. Phys. Lett.*, 2014, **104**, 213905.
- [5] S. Safshekan, I. Herraiz-Cardona, D. Cardenas-Morcoso, R. Ojani, M. Haro and S. Gimenez, ACS Energy Lett., 2017, 2, 469-475.
- [6] P. Wang, X. Chen, G. Sun, C. Wang, J. Luo, L. Yang, J. Lv, Y. Yao, W. Luo and Z. Zou, Angew. Chem. Int. Ed., 2021, 60, 1390-1395.