Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Rationally Designed Ta3N5@ReS² Heterojunctions for Promoted

Photocatalytic Hydrogen Production

Xiaoqiang Zhan^{a,b}, Zhi Fang^b, Bing Li^{a*}, Haitao Zhang^b, Leyao Xu^b, Huilin Hou^{b*}, Weiyou

*Yangb**

^a School of Mechanical and Power Engineering, East China University of Science and

Technology, Shanghai, 200237, P. R. China.

^b Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo

City, 315211, P. R. *China.*

Chemicals:

Tantalum(V) chloride (TaCl₅, A.R., Aladdin), glucose (Hushi), ammonium perrhenate (NH4ReO4, A.R., Aladdin), thiourea (CH4N2S, AR, Hushi, China), hydroxylamine hydrochloride (HONH₃Cl, A.R., Aladdin), Sodium sulfide (Na₂S, A.R., Aladdin), sodium sulfate (Na₂SO₃, AR, Hushi), Nafion perfluorinated resin solution (AR, Sigma-aldrich), ethanol (C₂H₆O, AR, Aladdin), and deionized water (Millipore, 18.2 M Ω ·cm) was used as chemical reagents without further purification.

Fig. S1 XRD pattern of pure ReS_{2.}

Fig. S2 (a-b) Typical SEM images of the used C balls

Fig. S3 (a-b) Typical SEM images of TaOx

Fig. S4 TEM images (a-b), HRTEM image (c) and SAED pattern (d) of TR0.

Fig. S5 TEM images (a-b) and HRTEM image (c) of ReS₂, corresponding elemental

mapping images (d), and EDX spectrum (e) of ReS_2 .

Fig. S6 (a-b) UV-visible absorption spectrum (a) and the calculated bandgap of $\text{ReS}_2(b)$, respectively. (c-d) UV-visible absorption spectrum (c) and the calculated bandgap of TR0 (d), respectively.

Fig. S7 XRD patterns of TR20 sample before and after cycle test.

Fig. S8 TEM images (a-c), HRTEM images (d-f) and element mapping images (h-l) of TR20 sample after cycle test.

Fig. S9 (a-b) Steady state (a) and time-resolved (b) photoluminescence spectra of TR20,

respectively.

Fig. S10 (a, c) The optimized ReS_2 with S vacancy (V_S) (a) and Re vacancy (V_{Re}) (c), and (b, d) the corresponding H* adsorption around defects, respectively. Discussion:

An exploration on the impact of defects on HER performance is investigated by DFT. Because H^* is adsorbed on the surface of ReS_2 , in order to exclude the influence of adsorption sites, we mainly compare the effect of defects between sole ReS_2 systems and $\text{Ta}_3\text{N}_5@ \text{ReS}_2$ heterostructures with the H^{*} adsorbed at the same sites. As show in Fig. S10a-d, some surface defects, *e.g.*, S vacancy (V_S) and Re vacancy (V_{Re}), are built in ReS₂ surface and Ta₃N₅@ReS₂ heterostructure, where the H* is absorbed at hollow site of among three S atoms closest to the defects. The results show that V_S could hardly improve the HER performance of Ta₃N₅@ReS₂ heterostructure, or even weaken that of ReS_2 surface (see Fig. 9f). In contrast, V_{Re} can significantly enhance the adsorption of H^{*}, leading to a much smaller ΔG_{H^*} (0.14 for ReS₂-V_{Re} and 0.06 for $Ta_3N_5@/ReS_2-V_{Re}$) close to zero with enhanced HER performance. Owing to the higher electronegativity of S (2.58) than that of Re (1.90), the H^{*} trends to be adsorbed with S atom. Besides, the appearance of one V_{Re} will inevitably break six Re-S bonds (Fig. S10c), which leads to the dangling bonds of S atoms with unpaired electron that could attract H* for electron pairing. Therefore, the V_{Re} brings an improved HER activity of ReS₂-based materials. What's more, the combination of Ta₃N₅ in the Ta₃N₅@ReS₂ systems could enhance the HER performance of sole ReS₂, regardless of the existed defects. Especially, Ta₃N₅@ReS₂-V_{Re} exhibit better HER performance than both Ta_3N_5 and Res_2-V_{Re} , representing the synergistic enhancement effect of Ta_3N_5 , ReS_2 and V_{Re} .

Fig. S11 The structures of Ta₃N₅ combined by incomplete ReS_2 with high-concentraion V_{Re} (a) and ReS_2 sheet with edges (b).

According to the DOS in Fig. 9g(IV), it seems that there are a lot of interface states within the midgap, which would become the center of carrier recombination. With the loss of Re atoms, many unsaturation S atoms at the edge of ReS_2 , implying that there are lots of V_{Re} defects at the edge of ReS_2 . Accordingly, it could be concluded that a small number of V_{Re} would enhance the adsorption of H* with thus improved HER performance ($\Delta G_{H^*} = 0.06$ eV). However, too much V_{Re} would make the adsorption energy of H^* be too high to desorb the H^* with weakened HER performance (ΔG_{H^*} = -0.24 eV). In the real experiment, the ReS₂ sheet is > 10 nm, which is too large for DFT calculations. Here, we buit a ReS_2 sheet strucutral model with the size of 0.72 nm (see Fig. S11b), which is much smaller than that in real experiment to generate a much higher concentration of V_{Re} . If the concentration of V_{Re} are reduced by the edge passivation, the HER performance would get enhanced, implying that there might be a optimal defect concertation toward best HER performance.

heterostructure.

element	Atom (%)
Та	58.78
N	35.2
Re.	2.1
	3 Q2

Table S1 The atomic ratio of the detected elements in EDX

Table S2 Comparison of activity for photocatalytic H_2 generation for some Ta₃N₅ based heterojunctions

References

- 1 Z. Peng, Y. Jiang, Y. Xiao, H. Xu, W. Zhang and L. Ni, Appl. Surf. Sci., 2019, 487, 1084-1095.
- 2 B. Niu and Z. Xu, J. Catal. , 2019, 371, 175-184.
- 3 M. Xiao, B. Luo, S. Thaweesak and L. Wang, Prog. Nat. Sci. Mater., 2018, 28, 189-193.
- 4 W. Zeng, S. Cao, L. Qiao, A. Zhu, P. Tan, Y. Ma, Y. Bian, R. Dong, Z. Wang and J. Pan, J. Colloid Interface Sci. , 2019, 554, 74-79.
- 5 M. Xiao, Z. Wang, B. Luo, S. Wang and L. Wang, Appl. Catal. B 2019, 246, 195-201.
- 6 L. Pei, Y. Yuan, J. Zhong, T. Li, T. Yang, S. Yan, Z. Ji and Z. Zou, Dalton Trans. , 2019, 48, 13176- 13183.
- 7 M. Xiao, B. Luo, M. Lyu, S. Wang and L. Wang, Adv. Energy Mater., 2018, 8, 1701605.
- 8 X. Jia, W. Chen, Y. Li, X. Zhou, X. Yu and Y. Xing, Appl. Surf. Sci. , 2020, 514, 145915.
- 9 Y. Xiao, W. Zhang, Q. Xing, X. Feng, Y. Jiang, Y. Gao, H. Xu, J. Zhang, L. Ni and Z. Liu, Int. J. Hydrogen Energy, 2020, 45, 30341-30356.
- 10 W.-P. Hsu, M. Mishra, W.-S. Liu, C.-Y. Su and T.-P. Perng, Appl. Catal. B, 2017, 201, 511- 517.