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Chemicals:

Tantalum(V) chloride (TaCls, A.R., Aladdin), glucose (Hushi), ammonium perrhenate
(NH4ReO4, A.R., Aladdin), thiourea (CH4N,S, AR, Hushi, China), hydroxylamine
hydrochloride (HONH;Cl, A.R., Aladdin), Sodium sulfide (Na,S, A.R., Aladdin), sodium
sulfate (Na,SOs, AR, Hushi), Nafion perfluorinated resin solution (AR, Sigma-aldrich), ethanol
(C,HgO, AR, Aladdin), and deionized water (Millipore, 18.2 MQ-cm) was used as chemical

reagents without further purification.
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Fig. S1 XRD pattern of pure ReS;.
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Fig. S2 (a-b) Typical SEM images of the used C balls



Fig. S3 (a-b) Typical SEM images of TaOx
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Fig. S5 TEM images (a-b) and HRTEM image (c) of ReS,, corresponding elemental

mapping images (d), and EDX spectrum (e) of ReS,,
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Fig. S6 (a-b) UV-visible absorption spectrum (a) and the calculated bandgap of ReS; (b),
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respectively. (c-d) UV-visible absorption spectrum (c) and the calculated bandgap of TRO (d),

respectively.
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Fig. S7 XRD patterns of TR20 sample before and after cycle test.



Fig. S8 TEM images (a-c), HRTEM images (d-f) and element mapping images (h-1) of TR20

sample after cycle test.

10



A
o
p—

(b)

—— Ta,N; s TRO
— TR20 > TR20

Intensuty (a.u.)
Intensity (a.u.)

S(l]() SiO 5:10 560 Sé(} Gll)l} 620 i é Ili :I é é 7" ;3 6 1l0 1I1 1I2 1l3 1I4 1I5
Wavelength (nm) Time (ns)

Fig. S9 (a-b) Steady state (a) and time-resolved (b) photoluminescence spectra of TR20,

respectively.
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Fig. S10 (a, ¢) The optimized ReS, with S vacancy (Vs) (a) and Re vacancy (Vg) (¢), and (b,
d) the corresponding H* adsorption around defects, respectively.
Discussion:

An exploration on the impact of defects on HER performance is investigated by DFT.
Because H* is adsorbed on the surface of ReS,, in order to exclude the influence of adsorption
sites, we mainly compare the effect of defects between sole ReS, systems and Ta;Ns@ReS,
heterostructures with the H* adsorbed at the same sites. As show in Fig. S10a-d, some surface
defects, e.g., S vacancy (Vs) and Re vacancy (Vg.), are built in ReS; surface and Ta;Ns@ReS,
heterostructure, where the H* is absorbed at hollow site of among three S atoms closest to the
defects. The results show that Vg could hardly improve the HER performance of Ta;Ns@ReS,
heterostructure, or even weaken that of ReS, surface (see Fig. 9f). In contrast, Vg, can
significantly enhance the adsorption of H*, leading to a much smaller AGy+ (0.14 for ReS;-Vg,
and 0.06 for Ta;Ns@/ReS,-Vge) close to zero with enhanced HER performance. Owing to the

higher electronegativity of S (2.58) than that of Re (1.90), the H* trends to be adsorbed with S
atom. Besides, the appearance of one Vg, will inevitably break six Re-S bonds (Fig. S10c),
which leads to the dangling bonds of S atoms with unpaired electron that could attract H* for
electron pairing. Therefore, the Vg, brings an improved HER activity of ReS,-based materials.
What’s more, the combination of Ta;Ns in the Ta;Ns@ReS, systems could enhance the HER

performance of sole ReS,, regardless of the existed defects. Especially, Ta;Ns@ReS,-Vg,
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exhibit better HER performance than both Ta;Ns and ReS,-Vg., representing the synergistic

enhancement effect of Taz;Ns, ReS, and Vg..
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Fig. S11 The structures of Ta;Ns combined by incomplete ReS, with high-concentraion Vg,

(a) and ReS,; sheet with edges (b).

According to the DOS in Fig. 9g(IV), it seems that there are a lot of interface states within
the midgap, which would become the center of carrier recombination. With the loss of Re
atoms, many unsaturation S atoms at the edge of ReS,, implying that there are lots of V. defects
at the edge of ReS,. Accordingly, it could be concluded that a small number of Vg, would
enhance the adsorption of H* with thus improved HER performance (AGy+ = 0.06 eV).
However, too much Vg, would make the adsorption energy of H* be too high to desorb the H*
with weakened HER performance (AGy+ = -0.24 eV). In the real experiment, the ReS, sheet is
> 10 nm, which is too large for DFT calculations. Here, we buit a ReS, sheet strucutral model
with the size of 0.72 nm (see Fig. S11b), which is much smaller than that in real experiment to
generate a much higher concentration of Vg.. If the concentration of Vg, are reduced by the
edge passivation, the HER performance would get enhanced, implying that there might be a

optimal defect concertation toward best HER performance.
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Fig. S12 The formation energies of the Vg and Vg, in sole ReS; surface and Ta;Ns@ReS,

heterostructure.
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Table S1 The atomic ratio of the detected elements in EDX

element Atom (%)
Ta 58.78
N 35.2
Re 2.1
S 3.92
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Table S2 Comparison of activity for photocatalytic H, generation for some Ta;Ns based

heterojunctions
Catalyst slt;iE:::te Cocatalyst I'(\:I:::;?:rl:')z AQE Ref.
TasNs/ReS,Uns 300W Xe lamp / 739.4 0.102% This
at 420 nm work
TazNs/CdIn,S, 300W Xe lamp 3 wt% Pt 122.6 / 1
TasNs/PANI 300W Xe lamp / 72.6 / 2
(A>410nm)
MoS,/TasNg 300W Xe lamp Pt 119.4 / 3
SrTaO,N/TasNs 300W Xe lamp 4 wt% Pt 19.07 / 4
(A>420nm)
MgO/Mg-TazNs 300W Xe lamp 1 wt% Pt 588 0.31% 5
(A>400nm) 2 wt% CoO, at 400 nm
TasNs/MoS, 300W Xe lamp / 565 0.882% 6
(A>420nm) at 420 nm
TasNs Nanomeshes Simulated 1 wit% Pt 580 0.53% 7
sun light at 450 nm
TazNs/SrTaO;N 300W Xe lamp 3 wt% Pt 77.31 / 8
(A>420nm)
ZnlIn,S,4/TasNg 300W Xe lamp 3 wt% Pt 834.86 / 9
TasNs-WO0, 7, 150 W Xe lamp Pt 516 / 10
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