Supporting Information

Construction of efficient bismuth/boron-based flexible electrode in organic media

toward neutral hydrogen evolution

Jinli Fan^{†a}, Weiju Hao^{†a*}, Chengyu Fu^a, Ziliang Chen^b, Rikai Liang^a, Cheng Lian^c, Qiang Zhang^{a*}, Guisheng Li^a

^a University of Shanghai for Science and Technology, Shanghai 200093, PR China.

^bInstitute of Functional Nano & Soft Materials (FUNSOM), Soochow University,

Suzhou 215123, PR China.

^cState Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.

* Corresponding author: Weiju Hao. Qiang Zhang

E-mail: wjhao@usst.edu.cn giangzhang@usst.edu.cn

Fig. S1. Loading amount of activated $Bi-B/BiB_3O_6$ on the HC substrate at different plating time (0.5 h, 1 h and 2 h).

Fig. S2. SEM images of Bi-B/BiB₃O₆@HC electrode during HER process at 25°C. (a₁), (a₂): activated HC; (b₁), (b₂): 0.5 h; (c₁), (c₂): 1 h; (d₁), (d₂): 2 h.

Fig. S3. (a) LSV curves; (b) Tafel slopes of $Bi-B/BiB_3O_6@HC$ electrode at different electroless plating time without *iR*-correction in 1.0 M PBS.

Fig. S4. Photograph and SEM images of bare HC, activated HC and Bi-B/BiB₃O₆@HC electrodes.

Fig. S5. Nitrogen adsorption-desorption isotherm curves of bare HC and Bi- $B/BiB_3O_6@HC$ electrodes.

Fig. S6. Contact angle measurements of $Bi-B/BiB_3O_6@HC$ electrode.

Fig. S7. (a) Full XPS patterns of $Bi-B/BiB_3O_6@HC$ electrode and the corresponding high-resolution. (b) Bi 4f. (c) B 1s. (d) O 1s.

Fig. S8. (a) Photograph of the three-electrode cell for neutral water splitting HER measurements; (b) photograph of working electrode; (c) LSV curve of bare NF; (d) LSV curve of bare Ti sheet.

Fig. S9. (a) LSV curves; (b) Tafel slopes of Bi-B/BiB₃O₆@HC electrode at different electroless plating time without *iR*-correction in 1.0 M KOH + 0.5 M NaCl.

Fig. S10. Cyclic voltage (CV) measurements of (a) $Bi-B/BiB_3O_6@HC$ and (b) $Bi-B/BiB_3O_6@NF$ in the non-Faradaic current range at scan rates of 30, 50, 70,90 and 110 mV S⁻¹.

Fig. S11. Photograph of folding scheme of Bi-B/BiB₃O₆@HC flexible electrode.

Fig. S12. Chronopotentiometric measurements of stability of $Bi-B/BiB_3O_6@HC$ electrode at the current density of 100 mA cm⁻² for 100 h.

Fig. S13. SEM images of chronoamperometric measurements of stability of Bi-B/BiB₃O₆@HC electrode at the current density of 100 mA cm⁻² after 36 h.

Fig. S14. XPS pattern of HER-cycled Bi-B/BiB₃O₆@HC electrode.

Fig. S15. (a-b) SEM images of Bi-B-P/BiB₃O₆@HC at different magnification, and corresponding elemental mapping of (c) O element; (d) P element; (e) Bi element; and (f) B element.

Fig. S16. (a-b) SEM images of Bi-B-Mo/BiB₃O₆@Paper at different magnification, and corresponding elemental mapping of (c) O element; (d) Mo element; (e) Bi element; and (f) B element.

Fig. S17. (a-b) SEM images of Bi-B-Co/BiB₃O₆@NF at different magnification, and corresponding elemental mapping of (c) O element; (d) Co element; (e) Bi element; and (f) B element.

Fig. S18. XRD patterns of (a) Bi-B-Co/BiB₃O₆@NF; (b) Bi-B-P/BiB₃O₆@Paper; (c) Bi-B-W/BiB₃O₆@HC; and (d) Bi-B/BiB₃O₆@HC.

Fig. S19. (a) LSV curves and (b) histogram at 10 mA cm⁻² of Bi-B/BiB₃O₆@NF, Bi-B-Co/BiB₃O₆@NF, Bi-B-Mo/BiB₃O₆@Paper, Bi-B-Ni/BiB₃O₆@Paper, Bi-B/BiB₃O₆ @HC, Bi-B-W/BiB₃O₆@HC and Bi-B-P/BiB₃O₆@HC in 1.0 M KOH + 0.5 M NaCl.

	В	Bi	Ni	W	Mo	Р	Co	Atomic
								ratio
Bi-B/BiB ₃ O ₆ @HC	4.52	1.38	-	-	-	-	-	3.28:1
Bi-B/BiB ₃ O ₆ @HC Post-HER	3.63	1.19	-	-	-	-	-	3.05:1
Bi-B/BiB ₃ O ₆ @NF	3.5	1.09	-	-	-	-	-	3.21:1
Bi-B- W/BiB ₃ O ₆ @HC	2.47	0.92	-	0.17	-	-	-	14.52:5.41:1
Bi-B- Ni/BiB ₃ O ₆ @Paper	3.07	1.03	0.21	-	-	-	-	14.61:4.9:1
Bi-B- Mo/BiB ₃ O ₆ @Paper	4.10	1.59	-	-	0.272	-	-	15:5.84:1
Bi-B- P/BiB ₃ O ₆ @HC	4.14	1.34	-	-	-	0.24	-	17.25:5.58:1
Bi-B- Co/BiB ₃ O ₆ @NF	3.36	1.08	-	-	-	-	0.22	15.27:4.9:1

 Table S1. ICP-AES analysis results of Bi-B based catalytic electrodes.

Catalysts	Electrolyte	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	Morphology	Reference
Bi- B/BiB ₃ O ₆ @HC	1.0 M PBS	88.5	74.6	-100 nm	This work
MoS ₂ /NLG-3	1.0 M PBS	142	72.9	1 1 um	1
Co-Ni-P/NF	1.0 M PBS	95	151		2
pFe/FeP	1.0 M PBS	125	66	500 nm	3
Ru/GC	1.0 M PBS	115	173.7	<u>10 nm</u>	4
RhCu NWs- 2	0.1 M PBS	165	211	50 nm	5
NSOC/CS	1.0 M PBS	103	113.7	<u>8 µm</u>	6

Table S2. Comparison of the HER performance of Bi-B/BiB₃O₆@HC with other electrocatalysts in PBS according to Figure 2h.

NiRh ₂ O ₄	1.0 M PBS	156	224.4	S S S S S S S S S S S S S S S S S S S	7
CoMoNiS-NF- 31	1.0 M PBS	117	56	200 nm	8
Fe-CoP	1.0 M PBS	134	50.1	100 nm	9
MoS ₂ /NVO	1.0 M PBS	96	70	-5 <u>00 nm</u>	10
S-MoP	1.0 M PBS	140	98		11
Cu@WC	1.0 M PBS	173	119	20 m	12
Co, Mo ₂ C-CNF	1.0 M PBS	206	92.8	<u>500 nm</u>	13
CoSAs- MoS ₂ /TiN NRs	1.0 M PBS	203	82.7	50 <u>0 nm</u>	14

WS ₂ /CoS ₂ /CC	1.0 M PBS	175	81		15
TM- Mo ₂ C@NCF	1.0 M PBS	109	110	7.mm	16
Cu-Ni ₃ S ₂	1.0 M PBS	128	151.0	<u>_1µm</u>	17
Mo-CoP/NC/TF	1.0 M PBS	130	84.1	500 nm	18
K-G _{4.0} T _{2.0} Mo _{1.0}	pH=7	150	197.2		19
RuCu NWs	0.01 M PBS	190	314	100 mm	20
Co ₉ S ₈ /NF	1.0 M PBS	193.9	168.3		21
Karst NF	1.0 M PBS	110	99		22

NiS _{2(1-X)} Se _{2x}	1.0 M PBS	124	81	БIII	23
--	-----------	-----	----	------	----

References

- 1.J. Y. Qin, C. Xi, R. Zhang, T. Liu, P. C. Zou, D. Y. Wu, Q. J. Guo, J. Mao, H. L. Xin and J. Yang, ACS *Catal*, 2021, **11**, 4486-4497.
- 2.D. Y. Li, L. Liao, H. Q. Zhou, Y. Zhao, F. M. Cai, J. S. Zeng, F. Liu, H. Wu, D. S. Tang and F. Yu, *Mater Today Phys*, 2021, **16**, 100314.
- 3.C. L. Xiao, R. R. Gaddam, Y. L. Wu, X. M. Sun, Y. Liang, Y. B. Li and X. S. Zhao, *Chem Eng J*, 2021, **408**, 127330.
- 4.S. Zhang, Y. Rui, X. Zhang, R. J. Sa, F. Zhou, R. H. Wang and X. J. Li, Chem Eng J, 2021, 417, 128047.
- 5.D. Cao, H. X. Xu and D. J. Cheng, Adv Energy Mater, 2020, 10, 1903038.
- 6.H. Y. Mou, Z. M. Xue, B. L. Zhang, X. Lan and T. C. Mu, J Mater Chem A, 2021, 9, 2099-2103.
- 7.D. Jin, A. Yu, Y. Lee, M. H. Kim and C. Lee, J Mater Chem A, 2020, 8, 8629-8637.
- 8.Y. Yang, H. Yao, Z. Yu, S. M. Islam, H. He, M. Yuan, Y. Yue, K. Xu, W. Hao, G. Sun, H. Li, S. Ma, P. Zapol and M. G. Kanatzidis, *J Am Chem Soc*, 2019, **141**, 10417-10430.
- 9.Y. M. Du, Z. C. Wang, H. D. Li, Y. Han, Y. R. Liu, Y. Yang, Y. J. Liu and L. Wang, *Int J Hydrogen Energ*, 2019, **44**, 19978-19985.
- 10.P. Chang, S. Zhang, X. M. Xu, Y. F. Lin, X. Y. Chen, L. X. Guan and J. G. Tao, *Chem Eng J*, 2021, **423**, 130196.
- 11.K. Liang, S. Pakhira, Z. Z. Yang, A. Nijamudheen, L. Ju, M. Y. Wang, C. I. Aguirre-Velez, G. E. Sterbinsky, Y. G. Du, Z. X. Feng, J. L. Mendoza-Cortes and Y. Yang, *ACS Catal*, 2018, **9**, 651-659.
- 12.M. Q. Yao, B. J. Wang, B. L. Sun, L. F. Luo, Y. J. Chen, J. W. Wang, N. Wang, S. Komarneni, X. B. Niu and W. C. Hu, *Appl Catal B-Environ*, 2021, **280**, 119451.
- 13.J. Y. Wang, R. L. Zhu, J. L. Cheng, Y. Y. Song, M. Mao, F. F. Chen and Y. L. Cheng, *Chem Eng J*, 2020, **397**, 125481.
- 14.T. L. L. Doan, D. C. Nguyen, S. Prabhakaran, D. H. Kim, D. T. Tran, N. H. Kim and J. H. Lee, *Adv Funct Mater*, 2021, **36**, 26.
- 15.X. Mu, J. Gu, F. Feng, Z. Xiao, C. Chen, S. Liu and S. Mu, Adv Sci (Weinh), 2021, 8, 2002341.
- 16.J. J. Huang, J. Y. Wang, R. K. Xie, Z. H. Tian, G. L. Chai, Y. W. Zhang, F. L. Lai, G. J. He, C. T. Liu, T. X. Liu, P. R. Shearing and D. J. L. Brett, *J Mater Chem A*, 2020, **8**, 19879-19886.
- 17.L. Zhang, X. Gao, Y. Zhu, A. Liu, H. Dong, D. Wu, Z. Han, W. Wang, Y. Fang, J. Zhang, Z. Kou, B. Qian and T. T. Wang, *Nanoscale*, 2021, **13**, 2456-2464.
- 18.Y. J. Li, B. Zhang, W. Y. Wang, X. J. Shi, J. Zhang, R. Wang, B. B. He, Q. Wang, J. J. Jiang, Y. S. Gong and H. W. Wang, *Chem Eng J*, 2021, **405**, 126981.
- 19.W. T. Zhang, H. Yu, D. H. Tang, Y. Huang, J. J. Wang, L. J. Yang and Z. Zhao, *Int J Hydrogen Energ*, 2021, **46**, 13936-13945.
- 20.D. Cao, J. Wang, H. Xu and D. Cheng, Small, 2020, 16, 2000924.
- 21.M. Kim, M. A. R. Anjum, M. Choi, H. Y. Jeong, S. H. Choi, N. Park and J. S. Lee, *Adv Funct Mater*, 2020, **30**, 2002536.
- 22.X. Q. Gao, Y. D. Chen, T. Sun, J. M. Huang, W. Zhang, Q. Wang and R. Cao, *Energ Environ Sci*, 2020, **13**, 174-182.
- 23.L. Y. Zeng, K. Sun, Y. J. Chen, Z. Liu, Y. J. Chen, Y. Pan, R. Y. Zhao, Y. Q. Liu and C. G. Liu, *J Mater Chem A*, 2019, **7**, 16793-16802.