Supporting Information

Ultra-low thermal conductivity in B_2O_3 composited SiGe bulk with

enhanced thermoelectric performance at medium temperature region

Jian Nong,^{†a} Ying Peng,^{†b} Chengyan Liu,^a Jin Bo Shen,^c Qing Liao,^b Yi Ling Chiew^d,

Yoshifumi Oshima^d, Fu Cong Li^a, Zhong Wei Zhang^a, and Lei Miao^{*a}

1. The Lorentz calculation

Because the charge carriers transport both heat and charge, κ_e is commonly estimated using the measured σ by the Wiedemann-Franz law: $\kappa_e = L\sigma T$, where L is the Lorenz number. Once κ_e is known, κ_l is computed by subtracting the κ_e from the total thermal conductivity, $\kappa = \kappa_e + \kappa_l$.

For a single parabolic band, L and S are both functions of reduced chemical potential (η) and carrier scattering factor (λ) only, the value of L is calculated according to the following formula:

$$L = \left(\frac{k_B}{e}\right)^2 \frac{(1+\lambda)(3+\lambda)F_{\lambda}(\eta)F_{\lambda+2}(\eta) - (2+\lambda)^2F_{\lambda+1}(\eta)^2}{(1+\lambda)^2F_{\lambda}(\eta)^2}$$
$$S = \frac{k_B}{e} \left(\frac{(2+\lambda)F_{\lambda+1}(\eta)}{(1+\lambda)F_{\lambda}(\eta)} - \eta\right)$$

Where $F_i(\eta)$ represents the Fermi integral,

$$F_{j}(\eta) = \int_{0}^{\infty} \frac{\epsilon^{j} d ! \epsilon}{1 + Exp[\epsilon - \eta]}$$

The Lorentz calculation values of different B₂O₃ adding amounts are shown in Fig. S1.

Fig. S1 Lorentz calculated value.

2. Effect of B₂O₃ on crystallization

In the miantext, it can be seen from XRD pattern, the stronger peaks intensities with the increase of the B_2O_3 content indicate that adding of B_2O_3 promotes the crystallization of SiGe. In addition to XRD characterization, we prepared samples without and added with B_2O_3 with the same sintering method and sintering time, and then characterized by SEM. As shown in Fig. S1(a), many holes and poor compactness in the sample without B_2O_3 are disclosed under the premise of the same preparation process. Figure S1(b) shows the sample added with B_2O_3 , which has good porosity and compactness, further illustrating that B_2O_3 can promote crystallization.

Fig. S2 (a) The SEM images of the sample without B₂O₃, (b) the SEM images of the sample added with B₂O₃

3. The EPMA measurement

EPMA works by bombarding micro-volume samples with focused electron beams and collecting Xrays emitted by various elements. Since the wavelengths of X-rays are characteristic of the emitting material, the sample components can be easily identified by recording wavelength dispersion spectra.

Figure. S3 is the EPMA test of $Si_{80}Ge_{20}B_{1.5}(B_2O_3)_{0.6}$ sample. It can be seen from the figure that the composition of point 1 and point 2 is different, and it can be judged that there are two phases. In addition, the sample was tested by surface scanning, and it was found that B element was distributed sporadically. It was inferred that it was probably a nano-second-phase containing B_2O_3 , which needed to be further confirmed by TEM analysis.

Fig. S3 The EPMA measurement of $Si_{80}Ge_{20}B_{1.5}(B_2O_3)_{0.6}$ Sample

4. The TEM observation

We have carried out TEM analysis in other different areas, and we can also find micropores, nanosecond-phase, it is proved from the side that the micropores and the nano-second-phase are uniformly distributed.

Fig. S4 TEM image of the micropores and nano-second-phase.

5. Fitting calculation of lattice thermal conductivity

We use the Callaway model to calculate the lattice thermal conductivity,¹⁻³ and the details are as follows.

$$k_{l} = \frac{k_{B}}{2\pi^{2}\nu} \left(\frac{k_{B}T}{\hbar}\right)^{3} \int_{0}^{\theta_{D}/T} \frac{x^{4}e^{x}}{\tau_{C}^{-1}(e^{x}-1)^{2}} dx$$

where $x = \hbar \omega / (kBT)$, kB, ω , \hbar , θD , ν and τ_c^{-1} are the reduced phonon frequency, Boltzmann constant, phonon frequency, reduced Planck constant, Debye temperature, sound velocity and phonon-scattering relaxation time, respectively.

The relaxation time is affected by point defect scattering, phonon-phonon scattering, stacking fault and electron-phonon scattering, second phase, micropore and grain boundary scattering, as shown in the following formula.

$$\tau_c^{-1} = A\omega^4 + B\omega^2 T \exp\left(-\theta_D / 3T\right) + C\omega^2 + \frac{\nu}{d}$$

Among them, $A\omega^4$ corresponds to the relaxation time of the scattering of point defects, relaxation time of phonon-phonon scattering corresponding to $B\omega^2 T \exp(-\theta_D / 3T)$, $C\omega^2$ corresponds to the ν

relaxation time of the stacking fault and electron-phonon scattering, \overline{d} corresponds to the relaxation time of the second phase, micropore and grain boundary scattering.

Combined with the actual test results and literature values,⁴⁻⁸ we get the parameters of the following table. The d is obtained from the grain size distribution and micropore size distribution of TEM images, and the B is obtained by fitting with k_l known in previous studies. The point defect scattering is not considered, but only phonon-phonon scattering, electron-phonon scattering and boundary scattering are considered, by fitting the experimental k_l , C can be obtained when B is determined. On the premise that both B, C and d are determined, combined with the actual test results, A is calculated.

Table S1				
Composition	A(s ³)	B(s/K)	C(s)	$\frac{\nu}{d}$ (s ⁻¹)
Si ₈₀ Ge ₂₀ B _{1.5} (B ₂ O ₃) _{0.6}	3500×10 ⁻⁴⁵	37×10 ⁻²⁰	0.4×10 ⁻¹⁷	8×10 ⁹

References

S. A. Barczak, J. Buckman, R. I. Smith, A. R. Baker, E. Don, I. Forbes and J. G. Bos, *Materials (Basel)*, 2018, **11**, 1-13.
E. Lkhagvasuren, C. Fu, G. H. Fecher, G. Auffermann, G. Kreiner, W. Schnelle and C. Felser, *Journal of Physics D: Applied Physics*, 2017, **50**, 1-6.

- 3. S.-H. Lo, J. He, K. Biswas, M. G. Kanatzidis and V. P. Dravid, Advanced Functional Materials, 2012, 22, 5175-5184.
- 4. Z. Liu, Q. Zhang, U. Wolff, C. G. F. Blum, R. He, A. Bahrami, M. Beier-Ardizzon, C. Reimann, J. Friedrich, H. Reith, G. Schierning and K. Nielsch, *ACS Appl Mater Interfaces*, 2021, **13**, 47912-47920.
- 5. X. Shi, Y. Pei, G. J. Snyder and L. Chen, Energy & Environmental Science, 2011, 4, 4086-4095.
- 6. S. Wan, P. Qiu, X. Huang, Q. Song, S. Bai, X. Shi and L. Chen, ACS Appl Mater Interfaces, 2018, 10, 625-634.
- 7. J. Yang, G. P. Meisner and L. Chen, Applied Physics Letters, 2004, 85, 1140-1142.
- 8. T. Zhu, G. Yu, J. Xu, H. Wu, C. Fu, X. Liu, J. He and X. Zhao, Advanced Electronic Materials, 2016, 2, 1-6.