Supporting Information

Defects and sulfur-doping design of porous carbon spheres

for high-capacity potassium-ion storage

Ruling Huang,^a Xixue Zhang,^a Zexi Qu,^a Xiaodong Zhang,^a Jiao Lin,^a Feng Wu,^{a,b,c,d}, Renjie Chen^{a,b,c*} and Li Li^{a,b,c,d*}

^aBeijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.

^bAdvanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, China.

^cCollaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China.

^dGuangdong Key Laboratory of Battery Safety, Guangzhou Institute of Energy Testing,

Guangzhou, Guangdong 511447, China.

*Corresponding author

E-mail address: chenrj@bit.edu.cn; lily863@bit.edu.cn

Figures

Fig. S1. SEM images of CMSs.

Fig. S2. SEM image of (a) SPCS-600, (b) SPCS-800, and (c) PCS-700.

Fig. S3. (a) XPS full surveys of various SPCS and PCS. S 2p XPS spectrum of (b) SPCS-600 and (c) SPCS-800. C 1s XPS spectrum of (d) SPCS-600, (e) SPCS-800, and (f) PCS-700.

Fig. S4. N₂ adsorption–desorption isotherm curve and pore size distribution (insets) of (a) SPCS-600; (b) SPCS-700; (c) SPCS-800; and (d) PCS-700.

Fig. S5. Electrochemical charge/discharge profiles of (a) SPCS-600 electrode; (b) SPCS-700 electrode, (c) SPCS-800 electrode, and (d) PCS electrode for the initial three cycles at a current density of 50 mA g^{-1} .

Fig. S6. CV curves of (a) SPCS-600 electrode and (b) SPCS-800 electrode at various scan rates from 0.2 to 1.2 mV s⁻¹. The b-values of (c) SPCS-600 electrode and (d) SPCS-800 electrode.

Fig. S7. (a) GITT profiles of various SPCS electrode during the second discharge/charge process.

Fig. S8. SEM images of SPCS-700 electrode: (a) before the first cycle; and (b) after 100 cycles. (c) SEM images of PCS electrode after 100 cycles.

Samplas	S _{BET}	V _t	d ₀₀₂	XPS composition [wt%]		
Sampies	$[m^2 g^{-1}]$	[cm ³ g ⁻¹]	[nm]	С	0	S
SPCS-600	436	0.179	0.376	81.52	6.92	11.56
SPCS-700	678	0.267	0.387	84.23	7.31	8.46
SPCS-800	709	0.274	0.395	88.82	4.97	6.21
PCS-700	590	0.233	-	88.43	11.57	-

 Table S1. Physical parameters for various SPCS and PCS-700.

Materials	Reversible Capacity & Rate capability	Cyclability	Ref.
SPCS-700	406 mAh g ⁻¹ @ 50mA g ⁻¹ 216 mAh g ⁻¹ @ 1000mA g ⁻¹	188.9 mAh g ⁻¹ /1000 cycles @ 0.5 A g ⁻¹	This work
S/O-codoped porous hard carbon microspheres	226.6 mAh g ⁻¹ @ 50mA g ⁻¹ 158 mAh g ⁻¹ @ 1000mA g ⁻¹	108.4 mAh g ⁻¹ /2000 cycles @ 1 A g ⁻¹	1
Hierarchically porous thin carbon shells	235 mAh g ⁻¹ @ 100 mA g ⁻¹ 64 mAh g ⁻¹ @ 4000 mA g ⁻¹	65 mAh g ⁻¹ /900 cycles @ 2 A g ⁻¹	2
N-dopedporoushollowcarbonspheres	280 mAh g ⁻¹ @ 28 mA g ⁻¹ 134 mAh g ⁻¹ @ 5600 mA g ⁻¹	154 mAh g ⁻¹ /500 cycles @ 1.4 A g ⁻¹	3
N/O-codoped porous hard carbon	365 mAh g ⁻¹ @ 25 mA g ⁻¹ 118 mAh g ⁻¹ @ 3000 mA g ⁻¹	230 mAh g ⁻¹ /100 cycles @ 0.05 A g ⁻¹	4
Hard-soft composite carbon	230 mAh g ⁻¹ @ 140 mA g ⁻¹ 167 mAh g ⁻¹ @ 1400 mA g ⁻¹	200 mAh g ⁻¹ /200 cycles @ 0.28 A g ⁻¹	5
N/O-codoped hard carbon	304.6 mAh g ⁻¹ @ 100 mA g ⁻¹ 178.9 mAh g ⁻¹ @ 5000 mA g ⁻¹	189.5 mAh g ⁻¹ /5000 cycles @ 1 A g ⁻¹	6
Mesoporous carbon	286.4 mAh g ⁻¹ @ 50 mA g ⁻¹ 144.2 mAh g ⁻¹ @ 1000 mA g ⁻¹	146.5 mAh g ⁻¹ /1000 cycles @ 1 A g ⁻¹	7
S/N-codoped hard carbon	276 mAh g ⁻¹ @ 100 mA g ⁻¹ 174 mAh g ⁻¹ @ 3000 mA g ⁻¹	213.7 mAh g ⁻¹ /500 cycles @ 0.1 A g ⁻¹	8
N/S-codoped graphene nanosheets	348.2 mAh g ⁻¹ @ 50 mA g ⁻¹ 204.3 mAh g ⁻¹ @ 2000 mA g ⁻¹	203 mAh g ⁻¹ /500 cycles @ 1 A g ⁻¹	9
Soft carbon	273 mAh g ⁻¹ @ ~7 mA g ⁻¹ 140 mAh g ⁻¹ @ 1395 mA g ⁻¹	150.6 mAh g ⁻¹ /50 cycles @ 0.558 A g ⁻¹	10
N/O-codoped carbon network	382 mAh g ⁻¹ @ 50 mA g ⁻¹ 181 mAh g ⁻¹ @ 2000 mA g ⁻¹	160 mAh g ⁻¹ /4000 cycles @ 1 A g ⁻¹	11
Carbon nanofiber foam	240 mAh g ⁻¹ @ 50 mA g ⁻¹ 164 mAh g ⁻¹ @ 1000 mA g ⁻¹	158 mAh g ⁻¹ /2000 cycles @ 1 A g ⁻¹	12
porous N-doped carbon fibers	197 mAh g ⁻¹ @ 50 mA g ⁻¹ 57 mAh g ⁻¹ @ 250 mA g ⁻¹	65 mAh g ⁻¹ /346 cycles @ 0.1 A g ⁻¹	13

Table S2. Potassium storage performance of SPCS-700 compared with previously reported materials.

References

- M. Chen, W. Wang, X. Liang, S. Gong, J. Liu, Q. Wang, S. Guo and H. Yang, Adv. Energy Mater., 2018, 8, 1800171.
- A. Mahmood, L. Shuai, Z. Ali, H. Tabassum and Y. Zhao, *Adv. Mater.*, 2018, 31, 1805430.
- 3 D. Qiu, J. Guan, M. Li, C. Kang, J. Wei, Y. Li, Z. Xie, F. Wang and R. Yang, *Adv. Funct. Mater.*, 2019, **29**, 1903496.
- 4 J. Yang, Z. Ju, J. Yong, X. Zheng and S. Xiong, *Adv. Mater.*, 2017, **30**, 1700104.
- 5 Z. Jian, S. Hwang, Z. Li, A. S. Hernandez, X. Wang, Z. Xing, D. Su and X. Ji, *Adv. Funct. Mater.*, 2017, **27**, 1700324.
- R. C. Cui, B. Xu, H. J. Dong, C. C. Yang and Q. Jiang, Adv. Sci., 2020, 7, 1902547.
- W. Wei, J. Zhou, Z. Wang, L. Zhao and S. Guo, *Adv. Energy Mater.*, 2018, 8, 1701648.
- Y. Liu, H. Dai, L. Wu, W. Zhou, L. He, W. Wang, W. Yan, Q. Huang, L. Fu and
 Y. Wu, *Adv. Energy Mater.*, 2019, 9, 1901379.
- W. Yang, J. Zhou, S. Wang, Z. Wang and S. Guo, ACS Energy Lett., 2020, 5, 1653–1661.
- 10 Y. Liu, Y. Lu, Y. Xu, Q. Meng, J. Gao, Y. Sun, Y. Hu, B. Chang, C. Liu and A. Cao, *Adv. Mater.*, 2020, **32**, 2000505.
- J. Ruan, Y. Zhao, S. Luo, T. Yuan and S. Zheng, *Energy Storage Mater.*, 2019, 23, 46-54.
- H. Zheng, C. Qing, Z. Avi, N. Yang and D. Cao, *Nano letters*, 2018, 18, 7407–7413.
- Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn and Y. Lu, *Acs Nano*, 2012, 6, 4319-4327.