Electronic Supplementary Information

2D/2D/2D Ti₃C₂T_x@TiO₂@MoS₂ Heterostructure as Ultrafast and High-sensitivity NO₂ Gas Sensor at Room-temperature

Zhuo Liu^a, He Lv^a, Ying Xie^a, Jue Wang^a, Jiahui Fan^a, Baihe Sun^a, Lin Jiang^a, Yang Zhang^a, Ruihong Wang^{*a} and Keying Shi^{*a}

a. Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, P. R. China.

* Corresponding author
Corresponding author: Tel.: +86 451 86609141; +86 451 86604920
E-mail: wangruihong@hlju.edu.com
E-mail: shikeying2008@163.com
Fax: +86 4518667 3647; Tel: +86 451 8660 9141

Materials	W. T. (°C)	Gas Conc. (ppm)	Tres/Trec	Sensitivity (R _a /R _g)	LOD (ppm)	Ref	
Ti ₃ C ₂ T _x @TiO ₂ @MoS ₂	RT (25°C)	50	1.8s/70.0s	55.12 ^①	0.023	This Work	
p-Type MoS ₂	125	100	14.33s/40.67s	10.36% [©]	0.1	[1]	
Monolayers-MoS ₂ film (visible light)	RT	0.2	83s/133s		0.005	[2]	
MoS ₂ (UV light)	RT	50	50s/100s		0.1	[3]	
MoS ₂ /rGO aerogel	200	0.5	/ < 1min	$8.7\%^{2}$	0.05	[4]	
Few-layer MoS ₂ film	120	50	/	38% ^②		[5]	
MoS ₂ -ZnO	RT	50	1.5s/30.9s	~35 ^①	0.01	[6]	
MoS ₂ /C ₃ N ₄ Hybrid Aerogel	RT	50	2.1s/35.7s	61.07 ^①	0.01	[7]	
MoS ₂ /ZnO	RT	10	/	$40\%^{2}$		[8]	
MoS ₂ -rGO-Cu ₂ O	RT	1	/	$3.06\%^{2}$	0.08	[9]	
40% 1T- and 60% 2H- MoS ₂	RT	2	10s/	25% [©]	0.025	[10]	
MoS ₂ -SnO ₂	RT	100	2.2s/225s	34.67^{\odot}	0.5	[11]	
MOF-derived In ₂ O ₃ /MoS ₂	RT	20	152s/<179s	~28 ^①	0.1	[12]	
MoS ₂ NSs/PbS QDs	RT	10	15s/62s	6.15 ^①	1	[13]	

Table S1 NO₂ sensing performance of MoS₂-based sensors.

W.T.: Working temperature; LOD: limit of detection; RT: Room temperature.

(1): $S=R_a/R_g$

②: S= $|R_a-R_g|/R_a \times 100\%$ or S= $|R_g-R_a|/R_a \times 100\%$

Fig. S1 FT-IR image of bare $Ti_3C_2T_x$ MXene nanosheets.

As shown in Fig. S1, FT-IR image revealed the stretching vibrations of the bare $Ti_3C_2T_x$ MXene at around 3441 and 1650 cm⁻¹, corresponding to the adsorbed water molecules (-OH) and C=O groups.¹⁴ The peak at 1327 and at 1223 cm⁻¹ are assigned to the O-H and C-F,¹⁵ and another two obvious peaks at 601, 649 and 823 cm⁻¹, corresponding to the stretching vibration of Ti-C, Ti-O and Ti-O-Ti.^{16,17}

Fig. S2 SEM image of bare $Ti_3C_2T_x$ MXene nanosheets.

Fig. S3 SEM images of Ti₃C₂T_x@TiO₂@MoS₂ composite.

Fig. S4 (a, c and e) XRD patterns and (b, d and f) TEM images of the pristine MoS_2 , $TiO_2@MoS_2$ and $Ti_3C_2T_x@MoS_2$ composites.

Generally, MoS₂ mainly exists in two different polymorphs, including trigonal prismatic semiconducting phase MoS₂ (2H-MoS₂) and octahedral metallic phase MoS₂ (1T-MoS₂). In this paper, all the synthesized MoS₂ are well matched to 2H-MoS₂, and 2H-MoS₂ is simply referred to as MoS₂. ^{17, 18}

For the pristine MoS₂ sample, the major XRD peaks at 13.69, 32.10, 35.66, 43.52 and 57.47° correspond to the (002), (100), (102), (006) and (110) plane of 2H-MoS₂, respectively. It shows the spherical structure assembled by MoS₂ layers, which is consistent with previous reports.²⁰ In the case of TiO₂@MoS₂, the XRD peaks at 25.3, 37.8, 47.9, 55.0 and 62.6° are in good agreement with anatase-TiO₂. It is noticed that the peak for TiO₂ (101) crystal plane is sharp and high in intensity, showing a good crystallinity. Fig. S4e displays the composition of Ti₃C₂T_x@MoS₂, in which the characteristic peak at 6.44° corresponds to the (002) crystal plane of Ti₃C₂T_x MXene. Besides, it displays the similar appearance as Ti₃C₂T_x@TiO₂@MoS₂ but with the absence of TiO₂.

Fig. S5 (a, b) HRTEM images of $Ti_3C_2T_x@TiO_2@MoS_2$ composite (The defects were marked in white).

Fig. S6 Raman spectra of the $Ti_3C_2T_x@TiO_2@MoS_2$, $Ti_3C_2T_x@MoS_2$, $TiO_2@MoS_2$ composites and the pristine MoS_2.

Fig. S7 XPS spectra of Mo 3d and S 2p for different samples.

Sample	Mo ⁵⁺	(eV)	Mo ⁵⁺ ar.ª (%)	S ₂ ²⁻	S2 ²⁻ ar. (%)	
F	3d _{3/2}	3d _{5/2}		2p 1/2	2p _{3/2}	
Ti ₃ C ₂ T _x @TiO ₂ @MoS ₂	232.5	229.2	41.1	164.4	163.3	24.1

38.9

34.4

29.8

164.2

164.2

164.7

163.1

163.1

163.6

23.5

22.4

15.2

TiO2@MoS2

 $Ti_3C_2T_x@MoS_2$

 MoS_2

232.5

232.4

232.9

229.1

229.1

229.5

Table S2 The bonding energy and peak area percent in Mo^{5+} and S_2^{2-} XPS spectra.

^a ar.% is the area percent of XPS peak. ar.% = [(area(1)+area(2))/peak area of Mo (or S) element] $\times 100\%$

Fig. S8 The core level XPS spectrum of C 1s in $Ti_3C_2T_x@TiO_2@MoS_2$ and pristine $Ti_3C_2T_xMX$ ene.

As shown in Fig. S8, the C 1s spectra is fitted by four components located at 281.3, 284.6, 286.3, and 288.5 eV, corresponding to C-Ti, C-C, C-O, and C-F bonds, respectively. It is obvious that the C-Ti decreased significantly due to the partial oxidation of $Ti_3C_2T_x$ to TiO_2 .

Fig S9 The equivalent circuit model used to interpret the EIS data.

Table S3 Parameters obtained by fitting experimental curve to equivalent circuit.

Raw materials	$R1$ (Ω)	<i>C1</i> (F)	$R2(\Omega)$	<i>C2</i> (F)
Ti ₃ C ₂ T _x @TiO ₂ @MoS ₂	4.173×10 ⁵	3.566×10 ⁻¹⁰	5.712×10 ⁴	5.952×10 ⁻¹¹
TiO ₂ @MoS ₂	7.685×10 ⁶	2.090×10 ⁻¹⁰	2.172×10 ⁵	2.368×10 ⁻¹⁰
$Ti_3C_2T_x@MoS_2$	2.607×10 ⁵	1.008×10 ⁻¹¹	5.935×10 ⁵	3.957×10 ⁻¹⁰
MoS_2	1.604×10 ⁵	1.280×10 ⁻¹¹	1.493×10 ⁶	7.902×10 ⁻¹⁰

Feeding weight (g)	Molar ratio Mo:S	Hydrothermal temperature (°C)	al Hydrothermal (°C) time (h)				
		200	12				
		200	24 (optimization)				
$Na_2MoO_4\bullet 2H_2O: 1.45$	1.4.2	200	30				
$CN_{2}H_{4}S: 1.90$	1:4.2	180	12				
		180	24				
		180	30				
$Na_2MoO_4•2H_2O: 0.725$	1.0.1	200	24				
$CN_{2}H_{4}S: 1.90$	1:2.1	200	24				
$Na_2MoO_4\bullet 2H_2O: 1.45$	1.9.2	200	24				
$CN_{2}H_{4}S: 0.95$	1:8.3	200	24				

 Table S4. The experimental conditions in detailed.

	1 / 1					J 1					~ ()										
Samula	Mo:S=1:4.2		N	1o:S=1:4	4.2	Mo:S=1:4.2			Mo:S=1:4.2			Mo:S=1:4.2			Mo:S=1:2.1			Mo:S=1:8.3			
Sample 200°C 12h		2h	200°C 30h		180°C 12h		180°C 24h		180°C 30h			200°C 24h			200°C 24h						
NO ₂ (ppm)	S	T _{res} /s	T _{rec} /s	S	T _{res} /s	T _{rec} /s	S	T _{res} /s	T _{rec} /s	S	T _{res} /s	T _{rec} /s	S	T _{res} /s	T _{rec} /s	S	T _{res} /s	T _{rec} /s	S	T _{res} /s	T _{rec} /s
50	14.24	8.0	38.4	13.15	3.7	62.9	20.87	6.4	61.3	35.28	9.1	62.4	18.17	8.0	100.3	45.97	2.1	74.1	42.14	3.7	95.5
30	10.94	7.5	43.2	10.08	4.8	53.3	11.45	3.2	48.5	17.92	10.1	60.3	9.44	8.5	83.2	24.12	3.7	59.2	34.63	2.1	74.7
10	4.75	8.5	35.7	7.45	4.3	50.7	5.40	5.3	46.9	4.29	9.6	52.8	8.04	9.6	85.3	2.67	4.3	64.5	3.22	4.3	66.7
5	3.68	6.4	44.8	4.19	5.9	47.5	1.63	6.4	42.2	3.43	10.1	51.2	4.83	5.9	69.3	2.24	6.9	48.0	2.19	8.0	62.4
3	3.21	5.3	45.9	3.30	6.9	46.4	1.38	7.5	39.5	3.22	8.5	51.7	4.46	9.1	67.2	1.99	7.5	56.5	1.93	9.6	54.9
1	2.56	5.9	42.7	3.06	8.0	54.9	1.30	8.5	41.1	2.72	10.1	55.5	2.07	7.5	55.4	1.63	10.7	36.8	1.73	11.2	53.3
0.5	1.93	6.9	37.9	2.28	9.6	56.0	1.21	7.4	30.9	2.48	10.7	51.8	1.41	11.2	38.9	1.58	9.6	47.5	1.51	13.9	58.7
0.3	1.71	9.1	36.3	1.65	10.7	42.1	1.15	6.9	29.9	1.39	12.8	39.5	1.20	11.7	32.5	1.35	10.1	46.9	1.33	16.5	48.0
0.1	1.57	10.7	34.7	1.23	11.2	41.6	1.08	9.6	17.1	1.28	11.2	35.2	1.15	12.3	31.5	1.14	12.8	29.3	1.29	18.7	55.5
0.05	1.22	9.0	30.4	1.09	12.8	20.3				1.18	14.9	29.3							1.16	20.2	43.7
0.03	1.00	11.7	22.9																1.10	20.8	42.1

Table S5 The response, response time and recovery time of different samples at RT for different NO₂ concentrations (RH: 23.4%).

*S: Response T_{res}: Response time T_{rec}: Recovery time

Fig. S10 Dynamic response curves of (a) $Ti_3C_2T_x@MoS_2$, (b) $TiO_2@MoS_2$, (c) MoS_2 and (d) $Ti_3C_2T_x$ MXene sensors to different concentration of NO₂ at room temperature (RH 23.4%).

Sample	Ti ₃ C ₂ T _x @TiO ₂ @MoS ₂			Ti	O2@Mo	\mathbf{S}_2	Ti ₃ ($C_2 T_x @N$	10S2	MoS ₂			
NO ₂ (ppm)	S	T _{res} /s	T _{rec} /s	S	T _{res} /s	T _{rec} /s	S	T _{res} /s	T _{rec} /s	S	T _{res} /s	T _{rec} /s	
50	55.16	1.8	70.0	14.46	5.5	89.6	25.67	2.1	71.2	7.59	8.5	104.8	
30	22.39	2.1	62.2	8.97	6.0	87.8	10.15	2.9	65.7	3.62	9.6	98.3	
10	14.34	3.2	52.5	8.41	6.5	86.2	5.38	3.2	59.0	2.64	10.1	93.9	
5	8.10	3.6	49.3	5.94	6.8	84.0	4.91	3.9	53.6	2.20	12.3	141.9	
3	4.46	3.9	41.8	2.74	7.9	77.6	3.04	4.6	51.5	1.88	12.8	139.7	
1	2.48	5.4	40.0	2.27	9.0	76.7	2.02	6.8	42.2	1.76	14.9	126.9	
0.5	1.63	6.1	36.8	1.54	9.8	79.3	1.63	7.5	37.9	1.35	13.3	90.7	
0.3	1.44	6.4	34.7	1.26	10.7	72.0	1.33	8.2	36.4	1.21	15.5	66.7	
0.1	1.27	7.2	32.5	1.09	11.1	66.1	1.24	8.6	34.7	1.11	17.6	63.5	
0.05	1.23	7.5	30.7	1.00	11.3	49.3	1.14	9.3	32.5				
0.03	1.17	7.9	28.9				1.03	10.4	29.3				
0.023	1.08	8.6	26.8										

Table S6 The response, response time and recovery time of samples at RT for different NO_2 concentrations (RH: 23.4%).

*S: Response

T_{res}: **Response** time

Trec: Recovery time

Fig. S11 The linear fitting of the $Ti_3C_2T_x@TiO_2@MoS_2$, $Ti_3C_2T_x$ @MoS_2 and $TiO_2@MoS_2$ sensors obtained from Fig.5a and S10a and b.

Fig. S12 Repeatability of the $Ti_3C_2T_x@TiO_2@MoS_2$ sensor to 50 ppm NO₂ with 5 circles.

Fig. S13 NO₂-TPD of $Ti_3C_2T_x$ @TiO₂@MoS₂ composite.

Fig. S14 The study of contact resistance: (a) gold interdigitated electrode for equivalent resistance models, and *I-V* curves of (b) $Ti_3C_2T_x$ MXene-Au, (c) MoS₂-Au, (d) $Ti_3C_2T_x@MoS_2$ -Au, (e) $TiO_2@MoS_2$ -Au, (f) $Ti_3C_2T_x@TiO_2@MoS_2$ -Au.

Fig. S15 (a)-(c) UV-Vis absorption spectra and (d)-(f) Tauc plots of $Ti_3C_2T_x$ MXene, MoS₂ and TiO₂. (The energy value at the point of intersection at the tangent line and the horizontal axis is the optical band gap).

Fig. S16 (a) UV-Vis absorption spectra and (b) Tauc plots of $Ti_3C_2T_x@TiO_2@MoS_2$ composites.

Fig. S17 (a and b) UV-Vis absorption spectra and (c and d) Tauc plots of $Ti_3C_2T_x@MoS_2$ and $TiO_2@MoS_2$ composites.

UV-vis analysis was conducted to further evaluate the band gaps of $Ti_3C_2T_x$ MXene, MoS₂, TiO₂, Ti₃C₂T_x@TiO₂@MoS₂, Ti₃C₂T_x@MoS₂ and TiO₂@MoS₂ composites are 1.38, 1.86, 3.43, 2.3, 2.68 and 2.82 eV respectively, which were calculated by the Kubelka-Munk method (Figure S12-17).

Fig. S18 (a)-(d) Scheme of the Kelvin probes of the $Ti_3C_2T_x$ MXene, MoS_2 , TiO_2 and the $Ti_3C_2T_x@TiO_2@MoS_2$ hybrid composite.

Fig. S19 The gas delivery system diagram for the sensing process.

References:

1. A.V. Agrawal, R. Kumar, S. Venkatesan, A. Zakhidov, G. Yang, J. Bao, Photoactivated mixed in-plane and edge-enriched p-type MoS₂ flake-based NO₂ sensor working at room temperature. ACS Sensors. 5 (2018) 998-1004.

2. H. Tabata, H. Matsuyama, T. Goto, O. Kubo and M. Katayama, ACS nano, 2021, 15, 2542-2553.6

3. W. Zheng, Y. Xu, L. Zheng, C. Yang, N. Pinna, X. Liu, J. Zhang, MoS₂ Van der Waals p-n Junctions Enabling Highly Selective Room-Temperature NO₂ Sensor, Advanced Functional Materials, 30 (2020) 2000435.

4. H. Long, A. Harley-Trochimczyk, T. Pham, Z. Tang, T. Shi, A. Zettl, C. Carraro, M. A. Worsley and R. Maboudian, *Advanced Functional Materials*, 2016, 26, 5158-5165.

5. M. Hojamberdiev, N. Goel, R. Kumar, Z.C. Kadirova, M. Kumar, Efficient NO₂ sensing performance of a low-cost nanostructured sensor derived from molybdenite concentrate, Green Chemistry, 22 (2020) 6981-6991.

6. M. Ikram, H. Lv, Z. Liu, K. Shi and Y. Gao, Journal of Materials Chemistry A, 2021.

7. M. Ikram, H. Lv, Z. Liu, M. Khan, L. Liu, F. Raziq, X. Bai, M. Ullah, Y. Zhang and K. Shi, *Chemistry of Materials*, 2020, 32, 7215-7225.

8. Y. Zhou, C. Gao, Y. Guo, UV assisted ultrasensitive trace NO₂ gas sensing based on few-layer MoS₂ nanosheet-ZnO nanowire heterojunctions at room temperature, *Journal of Materials Chemistry A*, 6 (2018) 10286-10296.

9. Y. Ding, X. Guo, D. Kuang, X. Hu, Y. Zhou, Y. He and Z. Zang, *Journal of Hazardous Materials*, 2021, 126218.

10. B. Zong, Q. Li, X. Chen, C. Liu, L. Li, J. Ruan, S. Mao, Highly Enhanced Gas Sensing Performance Using a 1T/2H Heterophase MoS₂ Field-Effect Transistor at Room Temperature, ACS Appl Mater Interfaces, 12 (2020) 50610-50618.

11. Y. Li, Z. Song, Y. Li, S. Chen, S. Li, Y. Li, Hierarchical hollow MoS₂ microspheres as materials for conductometric NO₂ gas sensors. Sensors and Actuators B: Chemical. 282 (2019) 259-67.

12. Z. Yang, D. Zhang and H. Chen, Sensors and Actuators B: Chemical, 2019, 300, 127037.

13. J. Liu, Z. Hu, Y. Zhang, H.-Y. Li, N. Gao, Z. Tian, L. Zhou, B. Zhang, J. Tang and J. Zhang, *Nano-micro letters*, 2020, 12, 1-13.

14. J. Xia, S.-Z. Yang, B. Wang, P. Wu, I. Popovs, H. Li, S. Irle, S. Dai and H. Zhu, *Nano Energy*, 2020, 72, 104681.

15. Y. Guo, T. Wang, Q. Yang, X. Li, H. Li, Y. Wang, T. Jiao, Z. Huang, B. Dong and W. Zhang, *ACS nano*, 2020, 14, 9089-9097.

16. P. Ilanchezhiyan, G. M. Kumar and T. Kang, *Journal of Alloys and Compounds*, 2015, 634, 104-108.

17. B. Dai, B. Zhao, X. Xie, T. Su, B. Fan, R. Zhang and R. Yang, *Journal of Materials Chemistry* C, 2018, 6, 5690-5697.

18. Y. Li, S. Yang, Z. Liang, Y. Xue, H. Cui and J. Tian, *Materials Chemistry Frontiers*, 2019, 3, 2673-2680.

19. D. Wang, B. Su, Y. Jiang, L. Li, B. K. Ng, Z. Wu and F. Liu, *Chemical Engineering Journal*, 2017, 330, 102-108.

20. R. Tang, D. Gong, Y. Deng, S. Xiong, J. Deng, L. Li, Z. Zhou, J. Zheng, L. Su and L. Yang, *Chemical Engineering Journal*, 2022, 427, 131809.