Defect-Rich Walnut-like Copper-Doped Ni(PO₃)₂ Catalyst towards Ammonia Borane Electrooxidation Reaction with High Performance

Jia Yu^a, Haiyan Jing^a, Peng Zhao^a, Keren Lu^a, Juanjuan Song^a, Zongdeng Wu^a, Haoxuan Wu^a, Boyuan Liu^a, Wu Lei^{a*}, Qingli Hao^{a*}

^a School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

E-mail: <u>qinglihao@njust.edu.cn</u> (Q. Hao)

Tel: +86-25-84315190

S1. Experimental section

The catalysts with different amounts of Cu were synthesized by one-pot hydrothermal method. In brief, 0.12 mmol Cu(NO₃)₂•3H₂O, 1.2 mmol Ni(NO₃)₂•6H₂O, 7.2 mmol urea were dissolved in 60 mL deionized water. The stirred-well solution was transferred to a 100 mL hydrothermal reactor and reacted at 160 °C for 20h. The precursor was collected by centrifugation and washed several times then dried in the vacuum oven at 80 °C overnight. Then, the product named 10% Cu-Ni₂CO₃(OH)₂•H₂O was annealed in air at 450 °C for 2h to get the metal oxide which was named 10% Cu-NiO. Finally, the oxide was placed in a porcelain boat and located downstream, meanwhile, another porcelain boat containing NaH₂PO₂ was placed upstream in the same tube (the mass ratio of 10% Cu-NiO and NaH₂PO₂ is 1:10). Under the nitrogen atmosphere, the tube furnace was heated to 350 °C (1 °C min⁻¹, 2 hours), and then cooled down to room temperature. The product was named 10% Cu-Ni(PO₃)₂. And other catalysts were synthesized through the same approach above by changing the addition of Cu(NO₃)₂•3H₂O, named Ni(PO₃)₂, 5% Cu-Ni(PO₃)₂ and 20% Cu-Ni(PO₃)₂, respectively.

S2. Characterization

X-ray diffraction (XRD) results were obtained on Bruker D8 Advance with a Cu K α radiation ($\lambda = 1.5408$ Å). Thermal gravimetric analyzer (TGA) data were obtained on Thermo Ecolab 250 at a rate of 10 °C min⁻¹ in air. X-ray photoelectron spectroscopy (XPS) was performed on an ESCALAB 250Xi spectrometer using Al K α monochromatic (100W, 30 eV pass energy). And the morphology of the catalysts was characterized by Scanning Electron Microscope (SEM, Quanta 250FEG), Transmission Electron Microscope (TEM, JEOL JEM-2100F), High-resolution TEM (HRTEM), and Energy Dispersive X-ray Spectroscopy (EDS mapping).

S3. Electrochemical measurements

The electrochemical measurements of ABOR were carried out on RRDE-3A Rotating Ring Disk Electrode Rotator Ver.1.2. The tests were conducted in a three-electrode system by using a rotating disk electrode (RDE, Φ 3mm), a graphite rod, an Ag/AgCl (saturated KCl) as the working, counter, and reference electrodes, respectively. And all the measurements were performed in N₂saturated 0.1 M KOH electrolyte with different amounts of AB at room temperature. 5 mg catalyst (Ni(PO₃)₂, 5% Cu-Ni(PO₃)₂, 10% Cu-Ni(PO₃)₂, or 20% Cu-Ni(PO₃)₂) and 0.5mg super P were dispersed in 1 mL aqueous solution (50 µL 5 wt% Nafion + 200 µL ethanol + 750 µL DI water) by ultrasonication for 1 hour. Then 5 µL ink was dropped onto the glassy carbon surface of the RDE, which served as the working electrode. The mass loading of the catalyst was 353 µg cm⁻².

Cyclic voltammetry (CV) tests were conducted in 0.001 M AB ~ 0.02 M AB + 0.1 M KOH at 1600 rpm with a scan rate of 10 mV s⁻¹. Linear sweep voltammetry (LSV) curves were obtained in 2.5 mM AB + 0.1 M KOH at different rotating speeds with a scan rate of 10 mV s⁻¹. And the open circuit potential (OCP) of different catalysts were tested in 0.01 M AB + 0.1 M KOH under static conditions. To evaluate the stability of the catalyst, chronoamperometry with multipotential

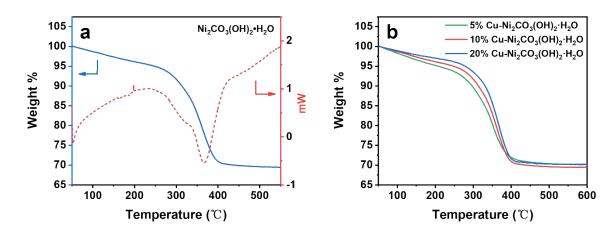
steps was tested in 0.01 M AB + 0.1 M KOH at -0.3, 0.1, 0.5 and 0.1 V vs. RHE with a rotating speed of 1600 rpm. All the potential values in this work were converted to vs. RHE scale by Nernst equation: $E_{RHE} = E_{Ag/AgCl} + 0.0591pH + 0.197$. The number transferred electron (n) was calculated by the following equations:

Levich equation:

$$i_{l,a} = 0.62nFAD_{R}^{2/3}\omega^{1/2}v^{-1/6}C_{R}^{*}$$
(S1)

where $i_{l,a}$ is the limiting anodic current at a given rotating rate, *F* is Faraday constant, *A* is the electrode area (cm²), *D_R* is the diffusion coefficient (8.45 × 10⁻⁶ cm² s⁻¹ for AB), ω is the electrode rotating rate (rad s⁻¹), *v* is the kinematic solution viscosity (1.216 × 10⁻² cm² s⁻¹ for AB), and C_R^* is the bulk concentration of the reduced species (mol cm⁻³).

Kouteck \hat{y} -Levich (K-L) equation:


$${}^{1}/_{i} = {}^{1}/_{i_{k}} + {}^{1}/_{i_{l,a}} = {}^{1}/_{i_{k}} + {}^{1}/_{0.62nFAD_{R}^{2/3}} \omega^{1/2} v^{-1/6} C_{R}^{*}$$
(S2)

where *i* is the disk current, i_k is the kinetically limited current.

CV was tested at the range of $-0.4 \sim 0$ V vs. RHE to avoid the oxidation of H2 above 0 V in a same three-electrode system by using a rotating disk electrode, a graphite rod, an Ag/AgCl (saturated KCl) as the working, counter, and reference electrodes, respectively. After 500 CV cycles in N2-saturated 0.1 M KOH or 0.1 M KOH + 0.1 M AB at 10 mV s-1, 1 mL gas above the cell was sampled by gas–tight syringe and monitored by gas chromatograph (GC). And the gas product from 0.1 M KOH + 0.1 M AB without catalyst which was static for 6h was also monitored by GC.

S4. Computational methods

Spin-polarized density functional theory (DFT) computations were performed using the Vienna ab initio simulation package (VASP) with the projected augmented wave method. The exchange-correlation function was described by the parameterization scheme of Per-dew-Burke-Ernzerhof of the generalized gradient approximation. The exchange-correlation function was described by the parameterization scheme of Per-dew-Burke-Ernzerhof of the generalized gradient approximation. The exchange-correlation function was described by the parameterization scheme of Per-dew-Burke-Ernzerhof of the generalized gradient approximation. The vacuum layer is set to 20 Å to avoid interactions between the periodically repeated structures along the z direction. The Grimme DFT-D3 scheme of dispersion correction with zero damping is adopted to account for the vdW interactions. We calculated and analyzed the d-band center of the (010) plane in Cu-Ni(PO₃)₂ with a unit cell parameter change of 0.6%. The adsorption energy of AB and BO₂⁻ on the surface of Cu-Ni(PO₃)₂ and Ni(PO₃)₂ was also calculated on (010) plane.

S5. Supplementary data

Fig. S1. (a) TGA and DSC curves of $Ni_2CO_3(OH)_2 \cdot H_2O$. (b) TGA curves of 5%, 10%, 20% Cudoped $Ni_2CO_3(OH)_2 \cdot H_2O$.

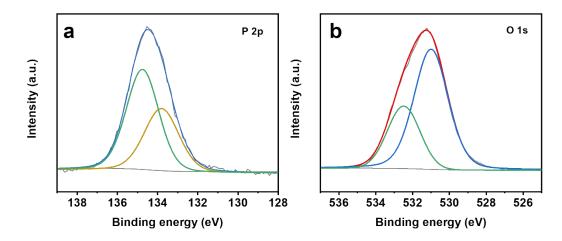


Fig. S2. High-resolution XPS spectrums of (a) O 1s and (b) P 2p of Ni(PO₃)₂.

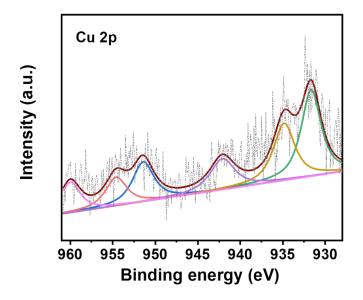


Fig. S3. High-resolution XPS spectrum of Cu 2p of 10% Cu-Ni(PO₃)₂.

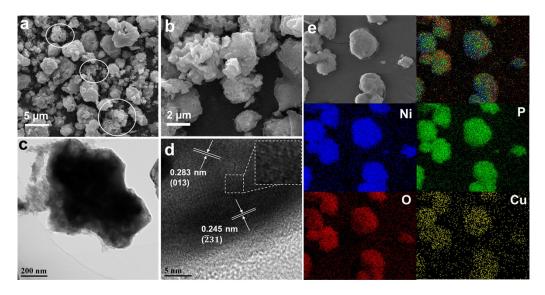


Figure S4. (a, b) SEM, (c) TEM, (d) HRTEM images and (e) corresponding EDS mapping images of 10% Cu-Ni(PO₃)₂ catalyst after stability test.

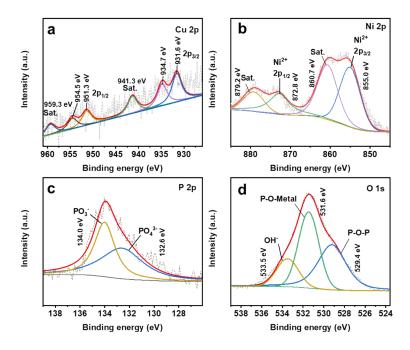


Figure S5. High-resolution XPS spectra of (a) Cu 2p, (b) Ni 2p, (c) P 2p and (d) O 1s in 10% Cu-Ni(PO₃)₂ after stability test.

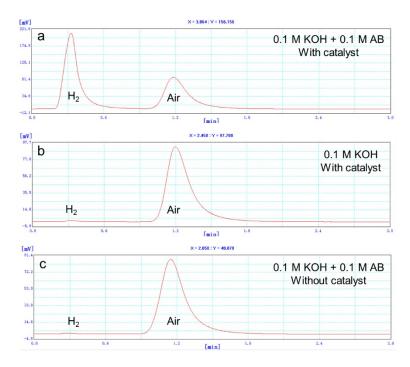


Figure S6. Gas chromatograms of the gas products of (a) 0.1 M KOH + 0.1 M AB, (b) 0.1 M KOH with catalyst, and (c) 0.1 M KOH + 0.1 M AB without catalyst.

Table S1. Comparison of electrocatalytic parameters of 10% Cu-Ni(PO₃)₂ catalyst and other electrocatalysts reported in the literature for ABOR.

Samples	Eonset	Current density	Electrolyte	Scan rate	Ref.
-	(V vs. RHE)	$(mA cm^{-2})$	solution	(mV s ⁻¹)	
10% Cu-Ni(PO ₃) ₂	-0.282	7.07 (at 0.298 V)	0.01 M AB+	10	This
			0.1 M KOH		work
Ni _{1-x} Cu _x O/CFP	-0.267	4.65 (at 0.3 V)	0.01 M AB+	10	1^{1}
			0.1 M KOH		
Ni _{1-x} Cu _x Se ₂ /CFP	-0.148	7.05 (at 0.3 V)	0.01 M AB+	10	22
			0.1 M KOH		
Ni _{1-x} Fe _x Se ₂ /CFP	-0.071	6.90 (at 0.3 V)	0.01 M AB+	10	22
			0.1 M KOH		
Ni _{1-x} Co _x Se ₂ /CFP	0.041	6.80 (at 0.3 V)	0.01 M AB+	10	22
			0.1 M KOH		
Au-Ag/PAP/GCE	-0.147	0.54 (at 0.5 V)	1 mM AB+	50	33
			2 M NaOH		
BNPSs*	-0.195	17.3 (at 0.5 V)	5 mM AB+	10	44
			0.1 M NaOH		
Pd/C	-0.200	7.5 (at 0.5 V)	5 mM AB+	10	55
			0.1 M NaOH	(1600 rpm)	
Pt/C	-0.030	7.5 (at 0.5 V)	5 mM AB+	10	5 ⁵
			0.1 M NaOH	(1600 rpm)	

Ni ₃ Co/C	-0.090	5 (at 0.3 V)	5 mM AB+	10	66
			0.1 M NaOH	(1600 rpm)	
Ni ₃ Ag/C	-0.050	6.3 (at 0.5 V)	5 mM AB+	10	66
			0.1 M NaOH	(1600 rpm)	
Ni ₃ Pd/C	-0.030	10 (at 0.5 V)	5 mM AB+	10	66
			0.1 M NaOH	(1600 rpm)	
Pt/C	-0.060	30 (at 0.669 V)	0.01 M AB+	25	7^{7}
			0.1 M NaOH	(1000 rpm)	
Pd/C	-0.275	30 (at 0.641 V)	0.01 M AB+	25	77
			0.1 M NaOH	(1000 rpm)	

The potential value corresponds to the oxidation current density and is expressed on the RHE scale.

* The abbreviation of bimodal nano porous Ag.

Table S2. The calculated lattice parameters for Cu-Ni(PO₃)₂.

Scale factor	Lattice parameters		
	a (Å)	b (Å)	
0.998	9.80	11.05	
1.004	9.86	11.12	

S6. References

- 1. C. Wu, J. Zhu, H. Wang, G. Wang, T. Chen and Y. Tan, *ACS Catal.*, 2019, **10**, 721-735.
- 2. G. Wang, H. Wang, T. Chen and Y. Tan, J. Mate. Chem. A, 2019, 7, 16372-16386.
- 3. Ş. U. Karabiberoğlu, Ç. C. Koçak, S. Koçak and Z. Dursun, *Nano-Micro Lett.*, 2016, **8**, 358-370.
- 4. J. Luo, P. Han, Z. Dan, F. Qin, T. Tang and Y. Dong, *Microporous Mesoporous Mater.*, 2020, **308**.
- 5. A. Zadick, J.-F. Petit, V. Martin, L. Dubau, U. B. Demirci, C. Geantet and M. Chatenet, ACS Catal., 2018, 8, 3150-3163.
- A. Zadick, L. Dubau, K. Artyushkova, A. Serov, P. Atanassov and M. Chatenet, *Nano Energy*, 2017, 37, 248-259.
- 7. P.-Y. Olu, F. Deschamps, G. Caldarella, M. Chatenet and N. Job, J. Power Sources, 2015, 297, 492-

503.