Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supplementary

Chemically engineered alloy anode enabling fully reversible conversion reaction: Design of C-Sn bonded aerofilm anode

 Sun -Sik Kim, $^{\ddagger a}$ Chenrayan Senthil, $^{\ddagger a}$ Sung Mi Jung^b and Hyun Young Jung $^{\ast ac}$

- ^a Department of Energy Engineering, Gyeongsang National University, Jinju-si, Gyeongnam 52725, South Korea
- b Environmental Fate & Exposure Research Group, Korea Institute of Toxicology, Jinju-si, Gyeongnam 52834, South Korea
- c Future Convergence Technology Research Institute, Gyeongsang National University, Jinju-si, Gyeongnam 52725, South Korea

To whom correspondence should be addressed. E-mail: hyjung@gnu.ac.kr (Prof. H.Y. Jung)

‡ Authors equally contributed

Fig. S1. (a) Formation of C-Sn bonded aerofilm anode by a simple immersion technique. (b) Ultralight nature of aerofilm anode placed over a dandelion flower.

Fig. S2. SEM micrographs at different spots (spot 1 and spot 2) depicting the morphological understanding in SnO₂ aerofilm anode annealed at 200, 300, 400, and 550°C compared with no annealed anode.

Fig. S3. (a) XPS survey for C-Sn bonded aerofilm anode.

Fig. S4. Cyclic voltammetry curves during the initial five cycles at $1mV s^{-1}$ (a) C-O-Sn and (b) C-Sn bonded anode.

Fig. S5. (a) Cyclic voltammetry curves of C-O-Sn bonded anode at various scan rates of 0.1, 0.2, 0.5, 1.0 mV⁻¹. (b) b-value from (a). (c) Diffusion and capacitive controlled Li storage contribution.

Fig. S6. XPS survey of cycled and lithiated C-Sn bonded aerofilm anode.

Cell parameters

The specific capacity was calculated based on the mass of SnO₂, which is considered as the active material. The details of cell parameters are as follows,

Table S1. Comparison of resistance and diffusion coefficient for C-Sn and C-O-Sn aerofilm anode on EIS.

	$\text{Rs }(\mathbf{k}\Omega)$	Rsei $(k\Omega)$	Rct $(k\Omega)$	D_{Li} (cm ² s ⁻¹)
$C-O-Sn$	12.1	0.75	0.36	$1.67E-11$
$C-Sn$	6.73	0.49	0.153	$1.54E-10$

Table S2. Electrochemical performance comparison of previously reported graphene-SnO₂ composite electrode for Li-ion battery.

Electrode (Content)	Synthetic method	Voltage Window (V)	1 st Cycle Capacity	$2nd$ Cycle Capacity $(mAh g-1)$ $(mAh g-1)$	Condition $(A \, g^{-1})$	Retention rate $(1st$ and $2nd$ Cycle)	Ref.
Graphene-SnO ₂	Immersing	$0.005 - 2.5$	1183	1158	0.158	98%	Our
aerofilm			958	951	0.790	99%	Work
Graphene/Sn @ carbonaceous foam	Hydrothermal	$0.001 - 3$	~1300	~1800	0.1	62%	S ₁
$Sn(\omega)3D$ graphene networks	Freeze drying and CVD	$0.005 - 3$	~1800	~1200	0.2	67%	S ₂
$SnO2$ quantum dotsa	Hydrothermal	$0.01 - 3$	~1500	~1000	0.1	67%	S ₃
F-doped $SnO2(\hat{a})rGO$	Hydrothermal	$0.01 - 3$	~ 2000	~1250	0.1	63%	S4
SnO ₂ /graphene	hydrolysis	$0.01 - 2$	~1000	-920	0.067	94%	S ₅
$SnO2/CNT-GN$ composite	Hydrothermal	$0.01 - 3$	~1800	~1100	0.2	61%	S ₆
3D annealed $SnO2/$ graphene foams	Hydrothermal	$0.01 - 3$	~1650	~1000	0.2	61%	S7
Tin graphene tube	Hydrothermal	$0.01 - 2.5$	~1300	~1000	0.2	69%	S ₈
N-Doped Gr SnO ₂	Solution	$0.05 - 3$	~1450	-900	0.05	62%	S ₉
Graphene Nanoribbon and Nanostructured SnO ₂	Solution refluxing	$0.01 - 2.5$	~1500	~1110	0.1	74%	S ₁₀
SnO ₂ /RGO	Hydrothermal	$0.01 - 3$	~1542	~1837	0.5	54%	S ₁₁

Electrode (Content)	Voltage Window (V)	Cyclability $(mAh g-1)$	Rate performance $(mAh g-1)$	Ref.
$Graphene-SnO2 aerofilm$	$0.005 - 2.5$	1255 (200cycle at 158mA g^{-1})	553 (1500cycle at 0.79A g^{-1})	Our Work
Graphene/Sn@carbonaceous foam	$0.001 - 3$	777 (100 cycles at 100 mA g^{-1})	506 (500 cycle at 400 mA g^{-1}) 270 (500cycle at 3200 mA g^{-1})	S ₁
Graphene/Sn @ carbonaceo us foam	$0.005 - 3$	1,089 (100cycle at $200mA \text{ g}^{-1}$)	459 (at 5 A/g) 270 (at 10 A g^{-1})	S ₂
$Sn@3D$ graphene networks	$0.01 - 3$	112 $(100$ cycles at 100 mA g^{-1})	417 (2,000 cycle at 2 A g^{-1})	S ₃
$SnO2$ quantum dots $@GO$	$0.01 - 3$	1,037 (150 cycles at 100 mA g^{-1})	860 (at 1 A/g) 770 (at 2 A g^{-1})	S4
F-doped $SnO2(QrGO)$	$0.01 - 2$	840 (30 cycle at $67mA \text{ g}^{-1}$)	590 (50 cycle at 400 mA g^{-1}) 270 (50 cycle at 1000 mA g^{-1})	S ₅
SnO ₂ /graphene	$0.01 - 3$	809 (100cycle at $200mA \text{ g}^{-1}$)	787 (at 500mA g^{-1})	S6
$SnO2/CNT-GN$ composite	$0.01 - 3$	984.2 (at 200mA g ⁻	533.7 (150 cycle at 1A g^{-1})	S7
3D annealed SnO ₂ /graphene sheet foams	$0.01 - 2.5$	916 (500cycle at $200mA \text{ g}^{-1}$)	810 (500 cycle at 0.5A g^{-1})	S8
tin graphene tube	$0.05 - 3$	894 (at 50mA g^{-1})		S9
N-Doped Gr_SnO ₂	$0.01 - 2.5$	825 (50cycle at $100mA \text{ g}^{-1}$)	580 (at $2A \text{ g}^{-1}$)	S10
Graphene Nanoribbon and Nanostructured $SnO2$	$0.01 - 3$	708 (150 cycle at 500mA g^{-1})	520 (at $1A \text{ g}^{-1}$)	S11

Table S3. Cycle stability comparison of previously reported graphene-SnO₂ composite electrode for Li-ion battery.

Table S4. Comparison of SnO₂ aerofilm anode with commercial graphite

References

- S1. B. Luo, T. Qiu, D. Ye, L. Wang, L. Zhi, Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage, Nano Energy 22 (2016) 232-240, https://doi.org/10.1016/j.nanoen.2016.02.024.
- S2. J. Qin, C. He, N. Zhao, Z. Wang, C. Shi, E.-Z. Liu, J. Li, Graphene networks anchored with Sn@ graphene as lithium ion battery anode, ACS Nano 8 (2014) 1728- 1738, https://doi.org/10.1021/nn406105n.
- S3. K. Zhao, L. Zhang, R. Xia, Y. Dong, W. Xu, C. Niu, L. He, M. Yan, L. Qu, L. Mai, SnO2 Quantum dots@graphene oxide as a high-rate and long-life anode material for lithium‐ion batteries, small 12 (2016) 588-594, https://doi.org/10.1002/smll.201502183.
- S4. D. Cui, Z. Zheng, X. Peng, T. Li, T. Sun, L. Yuan, Fluorine-doped SnO2 nanoparticles anchored on reduced graphene oxide as a high-performance lithium ion battery anode, J. Power Sources 362 (2017) 20-26, https://doi.org/10.1016/j.jpowsour.2017.07.024.
- S5. X. Wang, X. Zhou, K. Yao, J. Zhang, Z. Liu, A SnO2/graphene composite as a high stability electrode for lithium ion batteries, Carbon 49 (2011) 133-139, https://doi.org/10.1016/j.carbon.2010.08.052.
- S6. M.-S. Wang, Z.-Q. Wang, Z.-L. Yang, Y. Huang, J. Zheng, X. Li, Carbon nanotubegraphene nanosheet conductive framework supported SnO2 aerogel as a high performance anode for lithium ion battery, Electrochim. Acta 240 (2017) 7-15, https://doi.org/10.1016/j.electacta.2017.04.031.
- S7. M. Zhang, Z. Sun, T. Zhang, D. Sui, Y. Ma, Y. Chen, Excellent cycling stability with high SnO₂ loading on a three-dimensional graphene network for lithium ion batteries, Carbon 102 (2016) 32-38, https://doi.org/10.1016/j.carbon.2016.02.032.
- S8. A. Dhanabalan, X. Li, R. Agrawal, C. Chen, C. Wang, Fabrication and characterization of SnO2/graphene composites as high capacity anodes for Li-ion batteries, Nanomaterials 3 (2013) 606-614, https://doi.org/10.3390/nano3040606.
- S9. R. Tian, Y. Zhang, Z. Chen, H. Duan, B. Xu, Y. Guo, H. Kang, H. Li, H. Liu, The effect of annealing on a 3D SnO 2/graphene foam as an advanced lithium-ion battery anode, Sci. Rep. 6 (2016) 1-9, https://doi.org/10.1038/srep19195 (2016).
- S10. Z.-F. Li, Q. Liu, Y. Liu, F. Yang, L. Xin, Y. Zhou, H. Zhang, L. Stanciu, J. Xie, Facile preparation of graphene/SnO2 xerogel hybrids as the anode material in Li-ion batteries, ACS Appl. Mater. Interfaces 7 (2015) 27087-27095, https://doi.org/10.1021/acsami.5b05819.
- S11. Q. Tan, Z. Kong, X. Chen, L. Zhang, X. Hu, M. Mu, H. Sun, X. Shao, X. Guan, M. Gao, Synthesis of SnO2/graphene composite anode materials for lithium-ion batteries, App. Surf. Sci. 485 (2019) 314-322. https://doi.org/10.1016/j.apsusc.2019.04.225.
- S12. J.Kim, S.M.N.Jeghan, G.Lee, Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries, Microporous Mesoporous Mater. 305 (2020) 110325. https://doi.org/10.1016/j.micromeso.2020.110325.
- S13. P.Lian, X.Zhu, S.Liang, Z.Li, W.Yang, H.Wang, Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries, Electrochim. Acta 55 (2010) 3909-3914. https://doi:10.1016/j.electacta.2010.02.025.
- S14. A.S.Claye, J.E.Fischer, C.B.Huffman, A.G.Rinzler, R.E.Smalley, Solid-State Electrochemistry of the Li Single Wall Carbon Nanotube System, J. Electrochem. Soc. 147 (2000) 2845-2852.
- S15. Y.Yang, S.Jin, Z.Zhang, Z.Du, H.Liu, J.Yang, H.Xu, H.Ji, Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries, ACS Appl. Mater. Interfaces 9 (2017) 14180-14186. https://doi.org/10.1021/acsami.6b14840.