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Supplementary material:

Figure captions

Fig. S1. SEM image (a), EDS (c), TEM image (c) and HRTEM image (d) of PDMAA-

TiO2 hydrogel; SEM image (e), EDS (f), TEM image (g) and HRTEM image (h) of 

PDMAA-CuS hydrogel.

Fig. S2. a) UV-vis diffuse reflectance spectra of TiO2 particles, CuS particles, PDMAA-

TiO2, PDMAA-CuS and PDMAA-TiO2/CuS hydrogel. b) The band gap evaluation for 

linear dependence of (Ahv)2 versus hv for TiO2 and CuS.

Fig. S3. a) Photoluminescence spectra of PDMAA-TiO2, PDMAA-CuS and PDMAA-

TiO2/CuS hydrogel. b) The transient photocurrent response of PDMAA-TiO2, 

PDMAA-CuS and PDMAA-TiO2/CuS photocatalyst electrodes with light on-off cycles 

under visible light irradiation.

Fig. S4. TGA curves of PDMAA, PDMAA-TiO2, PDMAA-CuS, and PDMAA-

TiO2/CuS hydrogels.

Fig. S5. The swelling ratio of PDMAA-TiO2, PDMAA-CuS and PDMAA-TiO2/CuS 

hydrogel.

Fig. S6. Zeta potentials of PDMAA, PDMAA-TiO2, PDMAA-CuS and PDMAA-

TiO2/CuS hydrogel.

Fig. S7. FTIR spectra (a) PDMAA, (b) PDMAA-TiO2 and (c) PDMAA-TiO2/CuS 

hydrogel.

Fig. S8. XRD spectra of TiO2 nanoparticle, and PDMAA, PDMAA-TiO2, PDMAA-



CuS and PDMAA-TiO2/CuS hydrogel.

Fig. S9. a) Adsorption isotherm analyses of sulfaclozine on PDMAA-TiO2/CuS 

hydrogel. Conditions: hydrogel 0.1g, pH0= 7.0, 25 ℃. b) Adsorption isotherm analyses 

with Langmuir model of sulfaclozine on PDMAA-TiO2/CuS hydrogel. Conditions: 

hydrogel 0.1g, pH0= 7.0, 25 ℃.

Fig. S10. High-resolution XPS spectra (a) N 1s, (b) O 1s, (c) S 2p, (d) Ti 2p of PDMAA-

TiO2 hydrogel before and after the adsorption of sulfaclozine.

Fig. S11. High-resolution XPS spectra (a) N 1s, (b) O 1s, (c) S 2p, (d) Cu 2p of 

PDMAA-CuS hydrogel before and after the adsorption of sulfaclozine.

Fig. S12. High-resolution XPS spectra of (a) Ti 2p and (b) O 1s for PDMAA-TiO2, (c) 

S 2p and (d) Cu 2p for PDMAA-CuS, and (e) Ti 2p, (f) O 1s, (g) S 2p, and (h) Cu 2p 

for PDMAA-TiO2/CuS composite.

Fig. S13. The photodegradation rate of sulfaclozine using PDMAA-TiO2, PDMAA-

CuS, PDMAA-TiO2/CuS hydrogel, and mix (PDMAA-CuS hydrogel and TiO2 

nanoparticles) with 300W visible light. 

Fig. 14. The MS data and proposed structures of the intermediates of sulfaclozine 

photodegradation in the composite hydrogel catalysis system.

Fig. S15. The TOC removal ratio of sulfaclozine in the composite hydrogel catalysis 

system. 

Fig. S16. The curves of the removal rate for sulfaclozine using PDMAA-TiO2/CuS 

hydrogels at various circumstances including adsorption before degradation, adsorption 



again after degradation, and repeating adsorption without degradation. 

Fig. S17. XRD spectra of PDMAA-TiO2/CuS hydrogel before and after the cycling test.

Fig. S18. XPS spectra of PDMAA-TiO2/CuS hydrogel before and after the cycling test.

Fig. S19. The SEM images of PDMAA-TiO2/CuS hydrogel (a) before and (b) after the 

cycling test.

Fig. S20. The TEM images of PDMAA-TiO2/CuS hydrogel (a,b,c) before and (d, e, f) 

after the cycling test.

Table S1. The photodegradation intermediates of sulfaclozine. 

Table S2. Property comparison of photocatalysts reported in recent three years for 

degradation of antibiotics under visible light irradiation.
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Fig. S2. a) UV-vis diffuse reflectance spectra of TiO2 particles, CuS particles, PDMAA-

TiO2, PDMAA-CuS and PDMAA-TiO2/CuS hydrogel. b) The band gap evaluation for 

linear dependence of (Ahv)2 versus hv for TiO2 and CuS.
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Fig. S3. a) Photoluminescence spectra of PDMAA-TiO2, PDMAA-CuS and PDMAA-

TiO2/CuS hydrogel. b) The transient photocurrent response of PDMAA-TiO2, 

PDMAA-CuS and PDMAA-TiO2/CuS photocatalyst electrodes with light on-off cycles 

under visible light irradiation.

 

Fig. S4. TGA curves of PDMAA, PDMAA-TiO2, PDMAA-CuS, and PDMAA-

TiO2/CuS hydrogels.



Fig. S5. The swelling ratio of PDMAA-TiO2, PDMAA-CuS and PDMAA-TiO2/CuS 

hydrogel. 

Fig. S6. Zeta potentials of PDMAA, PDMAA-TiO2, PDMAA-CuS and PDMAA-

TiO2/CuS hydrogel.



Fig. S7. FTIR spectra (a) PDMAA, (b) PDMAA-TiO2, (c) PDMAA-CuS, and (d) 

PDMAA-TiO2/CuS hydrogel.

The FT-IR spectrum of PDMAA, PDMAA-TiO2, PDMAA-CuS, and PDMAA-

TiO2/CuS were displayed in Fig. S7. A broad peak around 3390 cm-1 was attributed to 

O-H stretching vibration. The peak at 2931 cm-1 was the result of the C-H stretching 

vibration. The absorption peaks at 1493 cm-1 and 1136 cm-1 were assigned to C-N 

stretching and bending vibrations, respectively. The stretch vibration peak of the 

carbonyl groups of PDMAA shifted from 1625 cm-1 to lower wavenumber field at 1613 

cm-1 in the FTIR spectra, which was the evidence of hydrogen bonding interaction 

between the polymer chains and TiO2 nanoparticles during curing process [1]. After 

loaded CuS, the FTIR spectra peak at 1613 cm-1 weakened dramatically compared with 

PDMAA-TiO2, which could be explained by the fact that carbonyl groups were the 

major function groups that interacted with CuS [2].



Fig. S8. XRD spectra of TiO2 nanoparticle, and PDMAA, PDMAA-TiO2, PDMAA-

CuS and PDMAA-TiO2/CuS hydrogel.
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Fig. S9. a) Adsorption isotherm analyses of sulfaclozine on PDMAA-TiO2/CuS 

hydrogel. b) Adsorption isotherm analyses with Langmuir model of sulfaclozine on 

PDMAA-TiO2/CuS hydrogel.
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Fig. S10. High-resolution XPS spectra (a) N 1s, (b) O 1s, (c) S 2p, (d) Ti 2p of PDMAA-

TiO2 hydrogel before and after the adsorption of sulfaclozine.
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Fig. S11. High-resolution XPS spectra (a) N 1s, (b) O 1s, (c) S 2p, (d) Cu 2p of 

PDMAA-CuS hydrogel before and after the adsorption of sulfaclozine.
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Fig. S12. High-resolution XPS spectra of (a) Ti 2p and (b) O 1s for PDMAA-TiO2, (c) 



S 2p and (d) Cu 2p for PDMAA-CuS, and (e) Ti 2p, (f) O 1s, (g) S 2p, and (h) Cu 2p 

for PDMAA-TiO2/CuS composite.

Fig. S13. The photodegradation rate of sulfaclozine using PDMAA-TiO2, PDMAA-

CuS, PDMAA-TiO2/CuS hydrogel, and mix (PDMAA-CuS hydrogel and TiO2 

nanoparticles) with 300W visible light. 



 



 



 



 



Fig. 14. The MS data and proposed structures of the intermediates of sulfaclozine 

photodegradation in the composite hydrogel catalysis system.



Fig. S15. The TOC removal ratio of sulfaclozine in the composite hydrogel catalysis 

system. 

Fig. S16. The curves of the removal rate for sulfaclozine using PDMAA-TiO2/CuS 

hydrogels at various circumstances including adsorption before degradation, adsorption 

again after degradation, and repeating adsorption without degradation. 



Table S1. The photodegradation intermediates of sulfaclozine

Product ID   Possible intermediates and structure     [M+H] +     Reported by  

I-1 101.14   [3]

I-2 107.95   [4]

I-3 110.13   [2]

I-4 111.08   [5]

I-5 113.05   [5]

I-6 113.05   [5]

I-7 130.29   [6]

I-8 131.96   [5]

I-9 156.11   [7]
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Product ID   Possible intermediates and structure     [M+H]+      Reported by 

 

I-10 173.97    [8]

I-11 176.01           [9]

I-12 221.07           [3]

I-13 270.69           [2]

I-14 301.85   [10]

I-15 301.85   [11]

I-16 308.69   [12]
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Fig. S17. XRD spectra of PDMAA-TiO2/CuS hydrogel before and after the cycling test. 

Fig. S18. XPS spectra of PDMAA-TiO2/CuS hydrogel before and after the cycling test.
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Fig. S19. The SEM images of PDMAA-TiO2/CuS hydrogel (a) before and (b) after the 

cycling test.

Fig. S20. The TEM images of PDMAA-TiO2/CuS hydrogel (a,b,c) before and (d, e, f) 

after the cycling test.



Table S2. Property comparison of photocatalysts reported in recent three years for degradation of antibiotics under visible light irradiation.

        Photocatalyst         Target contaminant  Separation free  Adsorption  Optimum photodegradation  Mineralization  Reusability  Year   Ref.

1  MoS2 /graphene aerogel Tetracycline  Yes - 10.00% -    Yes    2019  [13]

2  Bi2O3/Bi2MoO6 Tetracycline  N/A - 70.00% -    Yes    2019  [14]

3  In2S3/InVO4 Tetracycline  N/A - 71.41%  61.14%    Yes    2019  [15]

4  W-doped BaTiO3 Tetracycline  N/A  15.00% 80.00% - Yes    2019  [16]

5  TCPP/rGO/Bi2WO6 Tetracycline  N/A  - 84.00% - Yes    2019  [17]

6  Ce3+ doped Bi2O3           Tetracycline  N/A - 89.10% -       N/A   2019  [18]

7  Ti3+/N co-doped TiO2/DG Tetracycline  N/A - 92.00%            - N/A   2019  [19]

8  BiOCl/TiO2 composite Tetracycline  N/A  28.27% 84.04% - Yes    2020  [20]

9  MoS2/g-C3N4/Bi24O31Cl10 Tetracycline    N/A - 97.50% - Yes    2020  [21]

10 Z-scheme Bi2WO6-P25 Tetracycline  N/A - 89.00%  51.00% Yes    2021  [22]

11 CoP/ZnSnO3 Tetracycline  N/A - 96.44% - N/A   2021  [23]

12 Pt/BiVO4 Nanosheets Tetracycline  N/A - 88.50% - N/A   2021  [24]

13 Cu2O nanostructures Trimethoprim     N/A   - 77.29% - N/A   2021  [25]

14 Bi (Spheres)/g-C3N4         Amoxicillin  N/A - 5.00% - N/A   2019  [26]



        Photocatalyst         Target contaminant  Separation free  Adsorption  Optimum photodegradation  Mineralization  Reusability  Year   Ref.

15 Pt-Bi co-doped TiO2 Amoxicillin   N/A - 87.67% - N/A   2019  [27]

16 Mesoporous g-C3N4 Amoxicillin  N/A - 90.00%     25.00% Yes    2020  [28]

17 Cu doped TiO2 Amoxicillin  N/A - 90.00% - N/A   2020  [29]

18 CuI/FePO4 Amoxicillin  N/A - 90.00% - Yes    2022  [30]

19 TiO2/Bi2MoO6 Amoxicillin  N/A - 94.10%  65.40% Yes    2022  [31]

20 Fe3O4@SiO2@MIL-53-NH2 Ampicillin  N/A - 70.00% - Yes    2020  [32]

21 C3N4-MoS2/3DG            Ampicillin  N/A -         74.60%      26.87% N/A   2021  [33]

22 Bi/Bi3NbO7 nanosheets Ciprofloxacin  N/A - 86.00%   53.00% N/A   2019  [34]

23 Polyaniline/Bi4O5Br2        Ciprofloxacin    N/A  23.03% 99.00% - Yes    2019  [35]

24 Fe3O4/CdS/g-C3N4 Ciprofloxacin  N/A - 81.00% - N/A   2020  [36]

25 N-doped TiO2 nanoparticles Ciprofloxacin  N/A - 54.50%   26.00% N/A   2020  [37]

26 Ag-TiO2 Ciprofloxacin  N/A - 92.00% - Yes    2021  [38]

27 Bi2O3-modified La-NaTaO3 Ciprofloxacin  N/A - 83.00% - Yes    2021  [39]

28 g-C3N4/Zn doped Fe3O4 Cephalexin  N/A - 91.00%   80.50% Yes    2019  [40]

29 Urea/TiO2/ZnFe2O4/zeolite Cephalexin  N/A - 95.00% - Yes    2020  [41]



        Photocatalyst         Target contaminant  Separation free  Adsorption  Optimum photodegradation  Mineralization  Reusability  Year   Ref.

30 CuWO4/Bi2S3/ZIF67 Cephalexin  N/A - 90.10%   74.00% Yes    2020  [42]

31 z-scheme MoO3/Ag/C3N4  Ofloxacin  N/A  33.00% 96.00%  60.00% Yes    2020  [43]

32 N-TiO2 coupled BiVO4  Ofloxacin  N/A - 92.00%  78.00% Yes    2021  [44]

33 LaFeO3/lignin-biochar  Ofloxacin  N/A  26.71% 95.60% - Yes    2022  [45]

34 Biochar-based Zn-TiO2/pBC Sulfamethoxazole  N/A - 81.21%   56.13% Yes    2019  [46]

35 Fe3O4 modified BiOCl/BiVO4 Sulfamethoxazole  N/A - 91.00% - N/A   2019  [47]

36 MnO2 incorporating Fe2O3   Sulfamethoxazole  N/A         - 90.00% - Yes    2020   [3]

37 -Fe2O3@graphene Sulfamethoxazole  N/A   - 92.00% - N/A   2020  [48]𝛼

38 Silicate glass@Cu2O/Cu2V2O7 Sulfamethoxazole  N/A - 90.10%  83.20% Yes    2021  [49]

39 Ag2O-KNbO3 Sulfamethoxazole  N/A - 92.00% - N/A   2021  [50]

40 PDMAA-TiO2/CuS hydrogel    Sulfaclozine  Yes  32.96% 97.86%  67.53%       Yes    This work
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