Supporting Information

Living cell-based ultrahigh-supercapacitive behaviors

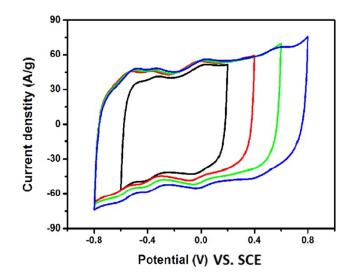
Xiaoshuai Wu^{a†}, Jing Liu^{b†}, Chun Xian Guo^{a†}, Zhuanzhuan Shi^a, Zhuo Zou^a, Wei Sun^d, Chang Ming Li^{a, c *}

a. Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou

University of Science and Technology, Su Zhou, Jiangsu 215009, P.R. China.

b. School of Chemical and Biomedical Engineering & Center for Advanced Bionanosystems,

Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.


c. Institute for Advanced Cross-field Science and College of Life Science, Qingdao University,

Qingdao 266071, P.R. China.

d. College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, P R China

[†] These authors contribute equally to this work.

*Correspondence to: Chang Ming Li, Correspondence and requests for materials should be addressed to C.M. Li (Email: <u>ecmli@usts.edu.cn</u>, <u>ecmli@swu.edu.cn</u>).

Figure S1. CVs of bio-supercapacitor constructed with *P. aeruginosa* biofilm grown on graphene coated carbon cloth electrodes in various electrochemical windows. The scan rate is 50 mV/s.

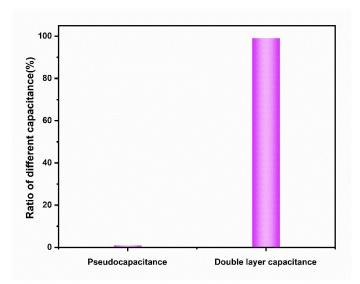


Figure S2. The ratio of pseudocapacitance and double layer capacitance of the living cell-based supercapacitors.

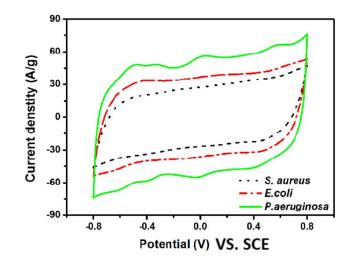


Figure S3. CVs of bio-supercapacitors constructed with S. aureus, E. coli and P. aeruginosa.