Supporting Information

Intercalation pseudocapacitance of hollow carbon bubbles with multilayered shells for boosting K-ion storage

Tianqi Wang, Wei Liu, * Mingzhu Li, Maofeng Hu, Zhipeng Duan, Yongxu Du, Hongguang Fan, Shuang Liu, Yongcheng Jin

School of Materials Science and Engineering, Ocean University of China, Qingdao 266100,

People's Republic of China.

E-mail: weiliu@ouc.edu.cn.

Figure S1 SEM image of FSC without removing Na_2CO_3 after heating treatment at 250 °C.

Figure S2 SEM image of FSC without removing Na_2CO_3 after heating treatment at 400 °C.

Figure S3 SEM image of FSC after removing Na₂CO₃ after heating treatment at 400 °C.

Figure S4 SEM image of FSC without removing Na₂CO₃ after heating treatment at 700 °C.

Figure S5 SEM image of FSC without removing Na₂CO₃ after heating treatment at 800 °C.

Figure S6 SEM image of HCB-500.

Figure S7 TEM image of HCB-700.

Figure S8 a, b) SEM images of HCB-700.

Figure S9 a, b, c) SEM image of CSCC.

Figure S10 SEM image of HCB-800.

Figure S11 a, b, c) TEM images of HCB-700.

Figure S12 a, b) TEM images of CSCC.

Figure S13 XRD pattern of CSCC.

Figure S14 XPS survey spectra of the HCB.

Figure S15 Normalized contribution proportions of capacitance and diffusion at different scan

a 50nm

rates of the CSCC anode.

Figure S16 HRTEM images of HCB-700 electrode after cycling.

Figure S17 Typical CV curves of the HCB-700 //AC PIHCs at different scan rates of the 5-

200 mV s⁻¹ for the voltage window of 0-4.2 V.

Figure S18 Typical charge-discharge curves of the HCB-700//AC PIHCs at different current densities of the 0.5-30 A g⁻¹ for the voltage window of 0-4.2V.

Figure S19 Ragone plots of the HCB-700//AC PIHC with different anode /cathode mass ratio.

Table S1	Comparisons of the cycling performance of HCB-700 electrode with other
	carbonbased anode materials in PIBs reported in open literature.

Sample	Cycling performance	Ref
HCB-700	250 mAh g ⁻¹ (1000 cycles, 2A g ⁻¹)	This work
N/O co-doped carbon	131 mAh g ⁻¹ (360 cycles, 0.5A g ⁻¹)	Ref. [34] of the txt
P/N cofunctionalized carbon	218 mAh g ⁻¹ (3000 cycles, 1A g ⁻¹)	Ref. [35] of the txt
Short Danga Ordar aarban	146.5 mAh g ⁻¹ (1000 cycles, 1A g ⁻	Ref. [36] of the txt
Short-Kange Order carbon	¹)	
N doped carbon nanosheets	151 mAh g ⁻¹ (1000 cycles, 1A g ⁻¹)	Ref. [37] of the txt
SiC-carbide-derived carbon	192 mAh g ⁻¹ (1000 cycles, 1A g ⁻¹)	Ref. [38] of the txt
Protorial Darived carbon	158 mAh g ⁻¹ (1000 cycles, 1A g ⁻¹)	Pof [20] of the tyt
Bacteriai-Derived carbon	141 mAh g ⁻¹ (1500 cycles, 2A g ⁻¹)	Kel. [39] of the txt
N doped carbon nanofibers	146 mAh g ⁻¹ (4000 cycles, 2A g ⁻¹)	Ref. [40] of the txt
Co ₂ P@Nitrogen-rich hollow	130 mAh g ⁻¹ (1000 cycles, 1A g ⁻¹)	[1]
carbon nanocages		

VO/C	241 mAh g ⁻¹ (1000 cycles, 1A g ⁻¹)	[2]
FeS/MoS ₂ @N-Doped	232 mAh g ⁻¹ (10000 cycles, 1A g ⁻¹)	[3]
carbon Nanocubes		

Referencs

- 1. D. Das, D. Sarkar, S. Nagarajan and D. Mitlin, *Chem Commun (Camb)*, **2020**, 56, 14889.
- J. Lu, C. Wang, G. Xia, H. Tong, Y. Yang, D. Zhu and Q. Chen, *J. Mater. Chem. A*, 2020, 8, 23939.
- J. Chu, Q. Yu, K. Han, L. Xing, C. Gu, Y. Li, Y. Bao and W. Wang, *J. Mater. Chem. A*, 2020, 8, 23983.