Supporting Information ## Fluorine-Free synthesis of ambient-stable delaminated Ti₂C_x (MXene) Ni Xue, Xuesong Li, Liuyuan Han, He Zhu, Xiangyan Zhao, Ji Zhuang, Zeliang Gao and Xutang Tao* State Key Laboratory of Crystal Materials, Shandong University, Shandong 250100, China. Email: txt@sdu.edu.cn Fig. S1 XRD of F-Ti₂C solution stored at room temperature for 0 h, 12 h and 24 h. Fig S2. SEM of Ti₂AlC. **Fig. S3** Photograph of the F-Ti₂C solution stored at low temperature (4 °C) for 0 h, 12 h, 36 h and 48 h. Fig. S4 XPS survey spectra of F-Ti₂C. Fig. S5 The Ti 2p peak fitting results for F-Ti₂C at 0 day. Fig. S6 The F-Ti₂C XPS peak fitting results for the TiO₂/Ti⁴⁺. Fig. S7 HR-TEM images of O- Ti_2C , the inset is the selective area electron diffraction pattern. Fig. S8 EDS element map scanning images of O-Ti₂C. Fig. S9 AFM image of F-Ti $_2$ C (a) and O-Ti $_2$ C (b). Fig. S10 Zeta potential of O-Ti₂C dispersion over time. Fig. S11 TEM of O- Ti_2C solution stored for 30 days. **Fig. S12** XPS survey spectra of O-Ti₂C. The typical position of F 1s was marked by a green circle. Fig. S13 Structural models of Ti₂CF₂ and Ti₂CO₂. **Table S1.** Bader charge of Ti_2CF_2 and Ti_2CO_2 (T=F / O) monolayers in e^a . | Sample | Ti | C | T | |---------------------------------|------|--------|-------| | Ti ₂ CF ₂ | 1.11 | -0.89 | -0.62 | | Ti_2CO_2 | 1.27 | -0.934 | -0.78 | The positive/negative values represent positively/negatively charged, respectively. ^a the e represent 1 electron charge. **Fig. S14** (a) Typical I–t characteristics of F-Ti₂C sensor for various relative humidity. (b) Typical I–t characteristics of O-Ti₂C sensor for various relative humidity. (c) Response and recovery time of O-Ti₂C sensor between 11% RH and 97% RH at 25 °C. **Table S2.** The comparison of humidity sensor performance of MXene. | | 1 | <u> </u> | 1 | | |--|----------|------------------|----------|------------| | Sample | Response | Response/recover | Range | References | | | | time | | | | PVA/MXene | 40 | 0.9/6.3 s | 11-97%RH | 1 | | $S-Ti_3C_2$ | 12.8 | 6/2 s | 11-97%RH | 2 | | $Ti_3C_2/K_2Ti_4O_9$ | 1.5 | 65.2/84.8 s | 11-97%RH | 3 | | Alkalized Ti ₃ C ₂ | 300 | 1/201 s | 11-97%RH | 4 | | O-MXene | 1450 | 15/20 s | 11-97%RH | This work | ## **Supplementary References:** - 1. D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi and L. Yu, Nano-Micro Lett., 2021, 13. - 2. R. Li, Y. Fan, Z. Ma, D. Zhang, Y. Liu and J. Xu, Mikrochim. Acta, 2021, 188, 81. - 3. J. Wu, P. Lu, J. Dai, C. Zheng, T. Zhang, W. W. Yu and Y. Zhang, Sensor. Actuat. B: Chem., 2021, 326, 128969. - 4. Z. Yang, A. Liu, C. Wang, F. Liu, J. He, S. Li, J. Wang, R. You, X. Yan, P. Sun, Y. Duan and G. Lu, *ACS Sens.*, 2019, **4**, 1261-1269.