Supporting Information

Fluorine-Free synthesis of ambient-stable delaminated Ti₂C_x (MXene)

Ni Xue, Xuesong Li, Liuyuan Han, He Zhu, Xiangyan Zhao, Ji Zhuang, Zeliang Gao and Xutang Tao*

State Key Laboratory of Crystal Materials, Shandong University, Shandong 250100, China.

Email: txt@sdu.edu.cn

Fig. S1 XRD of F-Ti₂C solution stored at room temperature for 0 h, 12 h and 24 h.

Fig S2. SEM of Ti₂AlC.

Fig. S3 Photograph of the F-Ti₂C solution stored at low temperature (4 °C) for 0 h, 12 h, 36 h and 48 h.

Fig. S4 XPS survey spectra of F-Ti₂C.

Fig. S5 The Ti 2p peak fitting results for F-Ti₂C at 0 day.

Fig. S6 The F-Ti₂C XPS peak fitting results for the TiO₂/Ti⁴⁺.

Fig. S7 HR-TEM images of O- Ti_2C , the inset is the selective area electron diffraction pattern.

Fig. S8 EDS element map scanning images of O-Ti₂C.

Fig. S9 AFM image of F-Ti $_2$ C (a) and O-Ti $_2$ C (b).

Fig. S10 Zeta potential of O-Ti₂C dispersion over time.

Fig. S11 TEM of O- Ti_2C solution stored for 30 days.

Fig. S12 XPS survey spectra of O-Ti₂C. The typical position of F 1s was marked by a green circle.

Fig. S13 Structural models of Ti₂CF₂ and Ti₂CO₂.

Table S1. Bader charge of Ti_2CF_2 and Ti_2CO_2 (T=F / O) monolayers in e^a .

Sample	Ti	C	T
Ti ₂ CF ₂	1.11	-0.89	-0.62
Ti_2CO_2	1.27	-0.934	-0.78

The positive/negative values represent positively/negatively charged, respectively. ^a the e represent 1 electron charge.

Fig. S14 (a) Typical I–t characteristics of F-Ti₂C sensor for various relative humidity. (b) Typical I–t characteristics of O-Ti₂C sensor for various relative humidity. (c) Response and recovery time of O-Ti₂C sensor between 11% RH and 97% RH at 25 °C.

Table S2. The comparison of humidity sensor performance of MXene.

	1	<u> </u>	1	
Sample	Response	Response/recover	Range	References
		time		
PVA/MXene	40	0.9/6.3 s	11-97%RH	1
$S-Ti_3C_2$	12.8	6/2 s	11-97%RH	2
$Ti_3C_2/K_2Ti_4O_9$	1.5	65.2/84.8 s	11-97%RH	3
Alkalized Ti ₃ C ₂	300	1/201 s	11-97%RH	4
O-MXene	1450	15/20 s	11-97%RH	This work

Supplementary References:

- 1. D. Wang, D. Zhang, P. Li, Z. Yang, Q. Mi and L. Yu, Nano-Micro Lett., 2021, 13.
- 2. R. Li, Y. Fan, Z. Ma, D. Zhang, Y. Liu and J. Xu, Mikrochim. Acta, 2021, 188, 81.
- 3. J. Wu, P. Lu, J. Dai, C. Zheng, T. Zhang, W. W. Yu and Y. Zhang, Sensor. Actuat. B: Chem., 2021, 326, 128969.
- 4. Z. Yang, A. Liu, C. Wang, F. Liu, J. He, S. Li, J. Wang, R. You, X. Yan, P. Sun, Y. Duan and G. Lu, *ACS Sens.*, 2019, **4**, 1261-1269.