Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

A highly temperature- and pressure-sensitive soft sensor self-powered by a galvanic cell design

Chenghao Dai^{a,b}, Huan Chen^{a,b}, Lei Wang^{a,b}, Yongqi Liu^{a,b}, Qiyan Yin^{a,b}, Jintao Jiang^a, Qiyang Zhou^a and Gengsheng Weng^{a,b,*}

^a School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
^b Ningbo Key Laboratory of Specialty Polymers, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo University, Ningbo, 315211, China

1. Materials

Carboxylated nitrile butadiene rubber (XNBR, NANCAR 1072, Mooney viscosity of 48, carboxylic acid content of 7 wt%) was kindly supplied by NANTEX. The 2,2'-azobis (isobutyronitrile) (AIBN) and N, N-Dimethylacrylamide (DMA) were provided by TCI. The glycidyl methacrylate (GMA), Zn(ClO₄)₂·6H₂O, 2-hydroxy-2-methylpropiophenone (photo initiator) and ethylene glycol dimethacrylate (EGDMA) were purchased from Macklin. NiCl₂·6H₂O was supplied by Adamas Reagent. Anthracene-9-carboxylic acid (Anca) was purchased from Aladdin. Benzyltriethylammonium chloride (BTAC) was purchased from Energy Chemical. Multi-walled carbon nanotubes (CNTs, diameter of 30~50 nm, length of 10-20 µm and purity > 95 wt%) was purchased from TIME NANO. The CNTs were stirred in a mixture of sulfuric acid (98 wt%) and nitric acid (68 wt%) with a volume ratio of 3:1 at 40 °C for 48 h, and washed several times with deionized water until the filtrate showed neutral pH to remove the amorphous carbon and metallic nanoparticles (used as a catalyst during synthesis). GMA was passed through a basic aluminum oxide column prior to use. AIBN was recrystallized from ethanol. Deionized water (High-Q, Inc. 103S Stills) with a resistivity of > 10.0 MΩ was used throughout the preparation of soft sensors.

2. Preparation of the self-powered elastomeric sensors

2.1 Preparation of Ni²⁺-and Zn²⁺-elastomers

The XNBR was first dissolved in dioxane under room temperature to obtain the XNBR solution (10 w/v%). Typically, to prepare the IPN elastomer with a Ni-to-COOH ratio of 0.086:1, 2 mL of XNBR solution (0.3 mmol COOH), 0.4 g of DMA (4 mmol), 20 μ L of EGDMA (0.021g, 0.1mmol), 15 μ L of photo initiator (0.1 mmol), 0.006 g of CNTs and 10 μ L of NiCl₂·6H₂O methanol solution (50 w/v%, 0.026 mmol) were first mixed

and sonicated (power of 180 W) for 30 min. Then, the mixture was poured into a Polytetrafluoroethylene (PTFE) mold ($40 \times 40 \times 7 \text{ mm}^3$). After exposed to UV light (1 mW/cm², 365 nm) for 20 min, an organogel with interpenetrated networks was obtained. Through subsequent drying of the as-prepared organogel, a Ni²⁺-elastomer film was obtained. Using 18 µL of Zn(ClO₄)₂·6H₂O methanol solution (50 w/v%, 0.026 mmol) instead of the NiCl₂·6H₂O methanol solution, a Zn²⁺-elastomer film was prepared.

2.2 Fabrication of the self-powered soft sensor

The as-prepared Zn²⁺- and Ni²⁺-elastomer films were first subjected to saturated water vapor for 3h. Then, using a Cu foil electrode as the cathode and a Zn foil electrode as the anode, the galvanic-cell-based soft sensor was fabricated by sandwiching the Ni²⁺- and Zn²⁺-elastomers between the Cu and Zn electrodes.

3. Preparation of the fluorescent probe containing Zn²⁺-elastomer film

The anthracene-9-carboxylic acid (Anca) modified P(DMA-*co*-GMA) was used as a blue-emissive fluorescent probe to observe the distribution of the PDMA in the Zn²⁺-elastomer matrix by confocal laser scanning microscopic (CLSM) imaging. First, a P(DMA-*co*-GMA) was prepared with a DMA-to-GMA mole ratio of 15/1. Typically, DMA (2g, 20.2mmol), GMA (0.192g, 1.35mmol) and AIBN (7 mg, 0.0431 mmol) were dissolved in 4mL of anisole in a 25 mL flask. After degassed under vacuum and filled with nitrogen for 10min, the mixture was then sealed and placed in a pre-heated oil bath at 65°C for 8 h. After reaction, the mixture was cooled down to room temperature and precipitated in hexane and dried under vacuum for 24 h to obtain the P(DMA-*co*-GMA).

The grafting of Anthracene-9-carboxylic acid (Anca) to the copolymer was carried out via the ring-opening reaction of epoxide moieties. The P(DMA-*co*-GMA) (0.5 g, 0.307 mmol in terms of GMA units) was firstly dissolved in 5 mL methanol. The 4 mL Anca and benzyltriethylammonium chloride (BTAC) methanol solution (0.206 g Anca and 0.211 g BTAC) was then added into the P(DMA-*co*-GMA) solution dropwise and refluxed at 65 °C for 12 h. After reaction, the mixture was then precipitated in mixed solvent of hexane/diethyl ether (1/1, v/v) for three times and dried under vacuum for 24 h to obtain Anca-modified P(DMA-*co*-GMA).

To prepare the fluorescent probe containing Zn^{2+} -elastomer film, 4 mL Anca-modified PDMA dioxane solution with 0.4 g Anca-modified P(DMA-*co*-GMA), 2 mL of XNBR dioxane solution (10 w/v%), 20 µL of EGDMA (0.021g, 0.1mmol), 15 µL of photo initiator (0.1 mmol) and 18 µL of $Zn(ClO_4)_2 \cdot 6H_2O$ methanol solution (50 w/v%, 0.026 mmol) were mixed and sonicated (power of 180 W) for 30 min (a DL-180B sonicator from Zisun, Shanghai). Then, the mixture was molded in the PTFE mold (40 × 40 × 7 mm³). After exposed to UV light (1 mW/cm², 365 nm) for 20 min, an organogel was obtained. Through subsequent drying of the asprepared organogel, a fluorescent probe containing Zn^{2+} -elastomer film was obtained.

4. Characterization

UV irradiation experiments were carried out using a 365 nm UV lamp (UV-20A, 1 mW/cm², Shanghai-Yaozhuang) to prepare IPN elastomeric films. The dispersion of CNTs were characterized by transmission electron microscope (TEM, FEI Tecnai G2 F20 S-TWIN). Ultrathin sections for TEM were prepared using a Leica Ultracut UCT ultramicrotome. The Ni²⁺ and Zn²⁺ distribution in the elastomer was investigated by a scanning electron microscopy (SEM) instrument (Su-70, Hitachi, Japan) operated at 15 kV coupled with an energy dispersive X-ray (EDX) spectrometer (EDAX, AMETEK Materials Analysis Division, USA). Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker Ascend 500 MHz spectrometer using CDCl₃ as the solvent for Anca-modified PDMA. A confocal laser scanning microscope (CLSM, Leica TSC SP8 FALCON) was used to observe the distribution of Anca-modified PDMA and XNBR phases. Uniaxial tensile tests on the elastomer films (thin strip samples of $25 \times 10 \times 0.4$ mm³) were carried out on an MTS Criterion Model 43 material testing machine with a loading cell of 100 N and a tensile speed of 50 mm min⁻¹ at 25 °C.

The V-I and discharging measurements of galvanic cells were conducted on an IT8511A+ electronic load using electrodes of a surface area of 16 cm². The elastomer films for those measurements were 4 cm in length and 0.4 mm in thickness. The discharging behaviors of all cells were conducted at a discharging current of 12.5 μ A and a stop voltage of 0 V. All measurements were carried out at 25 °C.

A Keithley 2000 multimeter was used to measure the pressure and temperature-sensitive current changes of the soft sensors throughout this work. To measure the current variation of the soft sensor (diameter of 1.5cm, area of $1.77cm^2$) upon heating, a Cossim PRT-8A hot plate (from 25 to 60°C, the heating rate is 10 °C/min) was used. The 1000 heating (40 °C)/cooling(30 °C) cycles at a switching frequency of ~0.1 Hz were also conducted to investigate the durability and repeatability. The Keithley 2000 multimeter was also chosen to measure the influence of force on the soft sensor ($4 \times 4 cm^2$) using an Metravib DMA +1000 dynamic mechanical analyzer with a fatigue mode for cyclic loading (frequency of 2.5 Hz, 25 °C, displacement of 0.05mm,0.03mm and 0.01mm). A multichannel signal recorder Toprie TP700 was applied to record the multichannel current changes of the electronic skin at 25 °C.

Figure S1. ¹H NMR spectra of Anca-modified PDMA using CDCl₃ as the solvent.

Figure S2. (a) The current changes of the SE sensor when alternatively subjected to 1000 heating (40 $^{\circ}$ C)/cooling(30 $^{\circ}$ C) cycles at a switching frequency of ~0.1 Hz. (b) The enlarged part of the current changes in (a).

Figure S3. The influence of finger temperature on the current signals of one "pixel" from the electronic skin.