## In-situ tailored strategy to remove capping agents from copper sulfide

## for building better lithium-sulfur batteries

Yuwei Zhao,<sup>a, +</sup> Donghai Wu,<sup>b, +</sup> Tingting Tang,<sup>a, +</sup> Chongguang Lyu,<sup>a</sup> Junfeng Li,<sup>c</sup> Shunping Ji,<sup>c</sup> Cheng-zong Yuan,<sup>c</sup> Kwan San Hui,<sup>d</sup> Chenyang Zha,<sup>a,c,\*</sup> Kwun Nam Hui,<sup>c,\*</sup> Houyang Chen,<sup>e,\*</sup>

<sup>a</sup> Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, Jiangsu, China

<sup>b</sup> Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, Henan, China

<sup>c</sup> Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Taipa, Macau SAR, 999078, China

<sup>d</sup> Engineering, Faculty of Science, University of East Anglia, Norwich, NR4 7TJ, United Kingdom.

<sup>e</sup> Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, NY 14260-4200, USA.

<sup>+</sup> These authors contributed equally to this article

\* Corresponding authors: iamcyzha@njtech.edu.cn (C. Zha) chenyangzha@um.edu.mo (C. Zha) bizhui@um.edu.mo (K.N. Hui) hchen23@buffalo.edu (H. Chen)

## Contents

|         | 33         |
|---------|------------|
| Fig. S1 | S4         |
| Fig. S2 | S5         |
| Fig. S3 | S6         |
| Fig. S4 | S7         |
| Fig. S5 | <b>S</b> 8 |
| Fig. S6 | S9         |
| Fig. S7 | S10        |
| Fig. S8 | S11        |

| Cathode                   | S loading             | Specific capacities            | Cycling stability     | Reference                 |
|---------------------------|-----------------------|--------------------------------|-----------------------|---------------------------|
| catalyst                  | [mg/cm <sup>2</sup> ] | [mAh/g]                        | [mAh/g]               |                           |
| C-Cu <sub>1.93</sub> S    | 1.0                   | 1207 at 0.8 mA/cm <sup>2</sup> | 580 after 500 cycles  | This work                 |
|                           | 2.0                   | 1023 at 0.8 mA/cm <sup>2</sup> | 610 after 500 cycles  |                           |
| TiS <sub>2</sub> -NSC     | 2.5                   | 1210 at 0.2 C                  | 920 after 120 cycles  | Adv. Energy               |
|                           | 2.5                   | 1019 at 1 C                    | 695 after 200 cycles  | Mater. 2019, 9,           |
| TiS <sub>2</sub> -NSC-CFs | 5.3                   | 1045 at 0.1 C                  | 734 after 200 cycles  | 1901872.                  |
|                           | 7.7                   | 1025 at 0.1 C                  | 767 after 100 cycles  |                           |
| NiS-C-HS                  | 1.0                   | 1002 at 0.2 C                  | 718 after 200 cycles  | Adv. Funct.               |
|                           | 2.3                   | 723 at 0.5 C                   | 695 after 300 cycles  | Mater. 2017, 27,          |
|                           |                       |                                |                       | 1702524.                  |
| ZnS-FeS/NC                | 2.01                  | Not given at 0.2 C             | 823 after 200 cycles  | J. Mater. Chem.           |
|                           | 2.40                  | Not given at 0.2 C             | 811 after 200 cycles  | <i>A</i> , 2020, 8,433.   |
|                           | 3.34                  | Not given at 0.2 C             | 796 after 200 cycles  |                           |
| VS-NT                     | 6.4                   | 944.9 at 0.2 C                 | 661 after 200 cycles  | ACS Energy Lett.          |
|                           | 9.6                   | 1356 at 0.1 C                  | 952 after 120 cycles  | 2019, 4, 755-762.         |
| SnS <sub>2</sub> -ND/G    | 2.5                   | 1234 at 0.2 C                  | 1016 after 300 cycles | J. Mater. Chem.           |
|                           |                       |                                |                       | A, 2018, <i>6</i> , 7659. |
| ZnS-CB                    | 1.37                  | 876 at 2 C                     | 632 after 1000 cycles | Nano Energy,              |
|                           | 1.37                  | 657 at 5 C                     | 388 after 1000 cycles | 2018, 51, 73.             |
| G-VS <sub>2</sub>         | 1.0                   | 1270 at 1 C                    | 923 after 150 cycles  | Adv. Energy               |
|                           | 2.0                   | 786 at 1 C                     | 559 after 150 cycles  | Mater., 2018,             |
|                           | 3.5                   | 701 at 1 C                     | 520 after 150 cycles  | 1800201.                  |
| G-Cu <sub>2</sub> S-S-C   | 3.5                   | 953 at 0.5 C                   | 720 after 300 cycles  | J. Mater. Chem.           |
|                           |                       | 809 at 1 C                     | 580 after 800 cycles  | A, 2019, 7, 12815.        |
|                           |                       | 635 at 2 C                     | 441 after 800 cycles  |                           |

**Table S1.** Electrochemical performances of Li-S batteries using C-Cu<sub>1.93</sub>S as cathode and previously reported Li-S batteries (all cells are charged at first).



**Fig. S1.** Structural characterizations of  $Cu_{1.93}S$ . The XRD pattern (a), XPS spectra of Cu 2p (b) and S 2p (c), SEM images (d-e).



**Fig. S2.** TEM images (a-b) of C-Cu<sub>1.93</sub>S. The charge and discharge profiles at 1st (c), 250th (d) and 500th (e) of C-Cu<sub>1.93</sub>S-based Li-S cells under different sulfur loading. The C-Cu<sub>1.93</sub>S-based Li-S cell with capacity ratios image (f) of  $\Delta C_2/\Delta C_1$  under different current. The cycling stability and Coulombic efficiency (g) of C-Cu<sub>1.93</sub>S-based Li-S cells. The cycling stability and Coulombic efficiency (h) of pure carbon cloth-based cells.



**Fig. S3.** XRD pattern (a), SEM image (b) of  $Cu_2S$  materials, and cycling performance of  $Cu_2S$ -based cell (c). The EIS of C- $Cu_{1.93}S$  and  $Cu_{1.93}S$ -based symmetric cells (d). Optical photographs (e-h) of in-situ technology-based chamber of XPS.



**Fig. S4.** Rated CV curves from 0.1 to 0.4 mV/s (a) with the corresponding magnified redox peaks (b-d).



Fig. S5. Crystal structure of C-Cu<sub>1.93</sub>S.



**Fig. S6.** Several possible configurations of  $Li_2S_8$  (a),  $Li_2S_6$  (b),  $Li_2S_4$  (c) and  $Li_2S$  (d) adsorption on the  $Cu_{1.93}S$  (004) surface.



Fig. S7. The charge density difference of the energy most favorable configurations for  $Li_2S_8$  (a),  $Li_2S_6$  (b),  $Li_2S_4$  (c), and  $Li_2S$  (d) adsorption on  $Cu_{1.93}S$  (004) surface. Cyan and yellow regions represent the charge depletion and accumulation in space, respectively.



**Fig. S8.** The electron local function plots of the energy most favorable configurations of a pure  $Cu_{1.93}S$  (004) surface with the adsorption of  $Li_2S_8$  (a),  $Li_2S_6$  (b), and  $Li_2S$  (c).