Supporting Information

Table S1. Comparisons of the synthesis details and electrochemical performance with serial carbonaceous sulfur hosts in lithium-sulfur batteries.

Host	Sulfur loading(mg·cm ⁻²) or content (wt%)	Areal Capacity (mAh·cm ⁻²)	Capacity (mAh·g ⁻¹)	Rate (C)	Electrolyte/sulfur ratio (µL·mg ⁻¹)	r Ref.
Co-NCFs	4.2 / 75	4.5	1071	0.5	15	1
NbC/Co-CFs	1.5 / 80	2.2	1466	0.1	10	2
VN-NC	7.1 / 75	4.8	676	0.05	10	3
MoN-C	1.2 / 75	1.92	1600	0.2	6.5	4
ePCNTM-20	2.0 / 75	2.13	1065	0.1	15	5
Fe ₂ N _{1-x} - NCT ₂₅	5.1 / 90	5.26	1031	0.1	10	This work
Fe_2N_{1-x} -NCT ₂₅	5.1 / 90	4.19	821	0.1	8	This work
Fe ₂ N _{1-x} - NCT ₂₅	5.1 / 90	3.38	662	0.1	5	This work

Cathoda	Sulfur	Host	PVDE hinder	Aluminum foil
Cathode	Sullui	1105t		(Φ=12mm)
NCT ₂₅	2.26 mg	0.96 mg	0.36 mg	
Fe ₂ N _{1-x} -NCT ₁₅	2.31 mg	0.99 mg	0.37 mg	
Fe ₂ N _{1-x} -NCT ₂₀	2.23 mg	0.95 mg	0.35 mg	4.83 mg
Fe ₂ N _{1-x} -NCT ₂₅	2.35 mg	1.00 mg	0.37 mg	C
High-loading Fe ₂ N _{1-x} - NCT ₂₅	5.76 mg	0.64 mg	0.71 mg	

Table S2: The detailed content of various sulfur contained cathode in this work.

Samplas	S _{BET}	S _{Meso}	$\mathbf{S}_{\mathrm{Micro}}$	V _t	V _{Meso}	V _{micro}
Samples	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$
Fe ₂ N _{1-x} -	120	21	00	0.20	0.12	0.08
NCT ₁₅	120	21))	0.20	0.12	0.00
Fe ₂ N _{1-x} -	262	161	102	0.25	0.15	0.10
NCT ₂₀	203	101	102	0.23	0.15	0.10
Fe ₂ N _{1-x} -	212	202	110	0.20	0.10	0.11
NCT ₂₅	512	202	110	0.30	0.19	0.11

Table S3: Summary of textural parameters of the obtained Fe_2N_{1-x} -NCT samples.

 S_{BET} : total BET specific surface area, S_{Meso} : mesopore specific surface area, S_{Micro} : micropore specific surface area, V_t : total pore volume, V_{Meso} : mesoporous volume, V_{Micro} : microporous volume.

Table S4: Summarized XPS data for polystyrene-ferrocene/polydopamine-Fe ³⁺ (PS-Fe/PDA	-
Fe ³⁺) fibers in Fig. S2a. Fe 2p binding energies (eV) for selected iron species are provided.	

Samples	Sat.	Porphyrin Fe 2p _{1/2}	Sat.	Porphyrin Fe 2p _{3/2}
PS-Fe/PDA-Fe ³⁺ fibers	727.8	723.7	715.4	710.8

Table S5: Summarized XPS data for NCT_{25} and Fe_2N_{1-x} - NCT_{25} in Fig. 3e. N 1s binding energies (eV) for selected nitrogen species are provided.

Samples	Oxided N	Graphite N	Pyrrole N	Fe-N	Pyridinic N
Fe ₂ N _{1-x} -NCT ₂₅	402.8	401.1	400.0	398.6	398.0
NCT ₂₅	402.8	401.2	400.2	/	398.2

Fe²⁺ Fe²⁺ Fe⁰ Fe⁰ Samples Fe/N Sat. Sat. $2p_{1/2}$ 2p_{3/2} $2p_{3/2}$ $2p_{1/2} \\$ Surface of Fe₂N_{1-x}-NCT₂₅ 727.0 725.1 722.2 400.0 716.8 709.1 1.98 50 nm depth of of Fe_2N_{1-x} -726.9 724.8 / 400.2 715.5 / 1.74 NCT₂₅

Table S6: Summarized XPS data for Fe_2N_{1-x} -NCT₂₅ in Fig. 3f. Fe 2p binding energies (eV) for selected iron species at different depth are provided.

Table S7: Summarized XPS data for NCT_{25}/Li_2S_6 in Fig. 4e. S 2p binding energies (eV) for selected sulfur species are provided.

Samples	Sulfate	S_B^{0}	S_T^{-1}
Blank	/	164.6/163.6	163.2/162.3
NCT ₂₅	168.5/166.7	164.4/163.9	163.2/162.7

Table S8: Summarized XPS data for Fe_2N_{1-x} -NCT₂₅/Li₂S₆ in Fig. 4f. S 2p binding energies (eV) for selected sulfur species are provided.

Samples	Sulfate	S_B^{0}	S_T^{-1}
Blank	/	164.6/163.6	163.2/162.3
Fe ₂ N _{1-x} -NCT ₂₅	168.7/166.9	165.0/164.1	163.7/163.3

Figure S1. Corresponding elemental mapping images of Figure 1b, 1f, and 1j.

Figure S2. (a) The XPS survey spectra and the high-resolution XPS spectra of (b) Fe 2p for polystyrene-ferrocene/polydopamine-Fe³⁺ fibers.

Figure S3. FT-IR patterns of polystyrene-ferrocene fibers, polystyrene-ferrocene/polydopamine fibers, and polystyrene-ferrocene/polydopamine-Fe³⁺ fibers.

Figure S4. Low-magnification SEM images of Fe_2N_{1-x} -NCT samples at a polystyrene concentration of (a) 15 wt%, (b) 20 wt%, and (c) 25 wt%.

Figure S5. High-magnification SEM images of Fe_2N_{1-x} -NCT₂₅ samples at a polystyrene concentration of 25 wt%.

Figure S6. TG/DSC curves of (a) polystyrene-ferrocene fibers and (b) polystyrene-ferrocene/polydopamine-Fe $^{3+}$ fibers.

Figure S7. The IFFT patterns of (a) Fe_2N_{1-x} nanocrystal and (b) graphene layer.

Figure S8. TG/DSC curves of Fe_2N_{1-x} -NCT₂₅ sample.

Figure S9. N₂ adsorption/desorption isotherm curve and pore distribution (inset) of (a) Fe_2N_{1-x} -NCT₁₅ and (b) Fe_2N_{1-x} -NCT₂₀.

Figure S10. Pore size distribution of Fe_2N_{1-x} -NCT of different diameters.

Figure S11. Cycling performances at 0.1 C of LSBs with Fe_2N_{1-x} -NCT hosts (with raised polystyrene concentration) under sulfur loading of 2.0 mg·cm⁻².

Figure S13. SEM images of (a) fresh Fe₂N_{1-x}-NCT₂₅/S cathode and (b) cycled Fe₂N_{1-x}-NCT₂₅/S cathode, cross-section SEM images of (c) fresh Fe₂N_{1-x}-NCT₂₅/S cathode and (d) cycled Fe₂N_{1-x}-NCT₂₅/S cathode. (Observable sulfur particles in yellow circles).

Figure S14. SEM images of (a) fresh NCT₂₅/S cathode and (b) cycled NCT₂₅/S cathode, crosssection SEM images of (c) fresh NCT₂₅/S cathode and (d) cycled NCT₂₅/S cathode. (Observable sulfur particles in yellow circles).

Figure S15. (a) Assembling scheme of a Li-S punch cell. (b) Cycling performance and (c) voltage profiles of the Fe_2N_{1-x} -NCT₂₅/S cathode assembled punch cell at 0.1 C. (d) A Li-S punch cell supported LED fan worked when cell was unfolded (left), bended (middle), and recovered (right).

Figure S16. DFT calculation results of optimized geometrical configurations of (a) Li_2S_8 , (b) Li_2S_6 , (c) Li_2S_4 , (d) Li_2S_2 , (e) Li_2S molecules on the nitrogen deficient Fe_2N_{1-x} ($\overline{110}$) surface model.

Figure S17. Structures of (a) pyrrolic N-doped and (b) pyridinic N-doped NCT used in firstprinciples calculations. The white, grey, yellow, blue, and purple balls represent H, C, N, and Li atoms, respectively. (c) Free energy diagrams for the reduction of LiPSs near the pyrrolic N and pyridinic N defects.

Figure S18. Adsorption energy of LiPSs on (a) pyrrolic N-doped or (b) pyridinic N-doped NCT. Geometrically stable configurations of Li₂S, Li₂S₂, Li₂S₄, Li₂S₆, and Li₂S₈ on pyridinic N-doped or pyrrolic N-doped NCT (from up to down).

Figure S19. The high-resolution XPS spectra of Fe 2p for Fe_2N_{1-x} -NCT₂₅ sample before and after cell cycling.

Figure S20. The voltage profiles of Fe₂N_{1-x}-NCT₂₅/S cathode and NCT₂₅/S cathode at 0.1 C for discharging.

References

- [1] Y. Boyjoo, H. Shi, E. Olsson, Adv. Energy Mater. 2020, 10, 2000651.
- [2] Y. Wei, B. Wang, Y. Zhang, Adv. Funct. Mater. 2021, 31, 2006033.
- [3] X. Wang, D. Luo, J. Wang, Angew. Chem. Int. Ed. 2021, 60, 2371-2378.
- [4] R. Li, H. Peng, Q. Wu, Angew. Chem. Int. Ed. 2020, 59, 12129-12138.
- [5] Y. Zhang, G. Li, J. Wang, Adv. Energy Mater. 2021, 11, 2100497