Conjugated polyelectrolytes for stable perovskite solar cells based on methylammonium lead triiodide

Yong Ryun Kim^{†a}, Juae Kim^{†b}, Heejoo Kim^{*c}, Hyungcheol Back^e, Geunjin Kim^d, Ayeong Gu^e, Chang-Yong Nam^f, Ju-Hyeon Kim^g, Hongsuk Suh^{*b}, Kwanghee Lee^{*a,e,g}

^a Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea

^b Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University (PNU), Busan 46241, Republic of Korea

^c Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea

^d Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea

^e Heeger Center for Advanced Materials (HCAM), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea

^f Centre for Functional Nanomaterials, Brookhaven National Laboratory (BNL), Upton, New York 11973, United States

^g School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea

++ Y.R.K. and J.K. contributed equally to this work

Address correspondence to heejook@gist.ac.kr, hssuh@pusan.ac.kr, klee@gist.ac.kr,

Fig. S1 - Synthetic route of CzNBr.

Fig. S2 - ¹H NMR of CzB.

Fig. S3 - ¹H NMR of CzNBr.

Mn : Mw : Mz : D : [n]: Vp : A : 10% 30% 60% 85% 90% 9,4337e3 1.1828e4 1.4635e4 0.00000 1.2538e0 0.000000 1.5084e1 9.9491e3 1.6449e4 5.7858e3 8.2941e3 1.1850e4 1.7588e4 1.9861e4 g/mol g/mol g/mol g/mol

ml/g ml g/mol ml*V g/mol g/mol g/mol g/mol

Fig. S4 - Gel Permeation Chromatography (GPC) data of CzNBr.

Fig. S5 - Optical and electrochemical characteristics of CzNBr in solution and film.

Fig. S6 - Thermogravimetric analysis (TGA) of CzNBr under N₂ conditions.

Fig. S7 - Statics of the device parameters depending on various concentrations of CzNBr solution from 0 to 0.4 wt%. (a) The V_{oc} , (b) J_{sc} , (c) FF and (d) PCE were calibrated for 30 devices for each condition.

Fig. S8 - (a) UV-Vis spectra of 0.2, 0.1 and 0.05 wt% CzNBr layers deposited on a quartz substrate. (b) AFM images of 0.1 wt% CzNBr deposited on the ITO substrate. (c) The height profiles are measured along the red lines in the corresponding images of (b). (d) shows the estimation of film thickness corresponding to the UV-Vis absorbance

of CzNBr according to Beer-lambert's law. (e) and (f) AFM images of the surface morphology corresponding to the structures $ITO/PTAA/PFN-Br/MAPbI_3/PC_{61}BM$ and $ITO/PTAA/PFN-Br/MAPbI_3/PC_{61}BM/CzNBr$.

Photovoltaics Laboratory, Korea Institute of Energy Research 152, Gajeong-ro, Yuseong-gu, Daejeon, 34129, Korea Tel : +82-42-860-3182, e-mail : notask@kier.re.kr

Fig. S9 - Certificated *J-V* characteristics and photovoltaic parameters of CzNBr devices from the Korea Institute of Energy Research (active area of 0.155 cm²).

	Sweep Direction	J _{sc} (mA/cm²)	Integrated J _{sc} (mA/cm ²)
w/o CzNBr	FWD	20.75	20.20
	REV	20.67	20.20
w/ CzNBr	FWD	22.70	21.64
, 52.051	REV	22.78	21.64

Table S1. Summary of J_{sc} values obtained from the *J*-*V* curve and integrated J_{sc} values from EQE spectra.

Fig. S10 - (a) UV-Vis spectra of ITO/PTAA/PFN-Br/MAPbI_3/PC_{61}BM and ITO/PTAA/PFN-Br/MAPbI_3/PC_{61}BM/CzNBr.

Table S2. The reported device performance based on pure $MAPbI_3$ with no additives engineering with n-i-p and p-i-n structure.

Device Structure	Metal Electrode	Charge Transport Layer	Hysteresis	J _{sc} (mA/cm²)	V _{oc} (V)	FF	PCE (%)	ref
	Ag	TiO ₂ /NMTTF	Yes	22.9	1.09	76.5	19.5	1
N-I-P	Au	SnO ₂ :Eu ³⁺	Yes	22.57	1.06	77.7	20.1	2
	Au	Lanthanum (La)–doped BaSnO₃	Yes	23.4	1.12	81.3	21.2	3
	Au	c-TiO ₂ /Li-doped m-TiO ₂	Yes	21.46	1.05	81.1	18.3	4
	Au	SnO ₂	No	22.81	1.07	77.6	18.94	5
P-I-N	Cu	Vacuum processed C60/BCP	Yes (Single Crystal)	23.68	1.14	0.81	21.9	6
	Ag	Vacuum processed /BCP/Bi	No	21.62	1.10	0.76	18.02	7
	AI	Solution processed PC ₆₁ BM(Graphdiyne)ZnO	-	23.3	1.02	78.4	20%	8
	Ag	Solution processed TBAOH-SnO ₂	No	21.6	1.08	80.5	18.77	9
	Cu	Solution processed PC ₆₁ BM/BCP	No	21.45	1.09	0.79	18.35	10
	Cu	Vacuum processed C ₆₀ /BCP	No	22.3	1.07	79	19.1	11
P-I-N	Cu	Solution processed PC ₆₁ BM/CzNBr	No	22.78	1.15	0.80	20.3	Our Work

Reference for Table S2

- 1. H. Wang, M. Chen, F. Li, R. Sun, P. Wang, F. Ye, H. Zhang, W. Miao, D. Liu and T. Wang, ACS Applied Energy Materials, 2020, **3**, 9824-9832.
- 2. Y. Chen, X. Zuo, Y. He, F. Qian, S. Zuo, Y. Zhang, L. Liang, Z. Chen, K. Zhao, Z. Liu, J. Gou and S. Liu, *Advanced Science*, 2021, **8**, 2001466.
- 3. S. S. Shin, E. J. Yeom, W. S. Yang, S. Hur, M. G. Kim, J. Im, J. Seo, J. H. Noh and S. I. Seok, *Science*, 2017, **356**, 167-171.
- 4. P. Holzhey, P. Yadav, S.-H. Turren-Cruz, A. Ummadisingu, M. Grätzel, A. Hagfeldt and M. Saliba, *Materials Today*, 2019, **29**, 10-19.
- 5. M. B. Johansson, L. Xie, B. J. Kim, J. Thyr, T. Kandra, E. M. J. Johansson, M. Göthelid, T. Edvinsson and G. Boschloo, *Nano Energy*, 2020, **78**, 105346.
- A. Y. Alsalloum, B. Turedi, X. Zheng, S. Mitra, A. A. Zhumekenov, K. J. Lee, P. Maity, I. Gereige, A. AlSaggaf, I. S. Roqan, O. F. Mohammed and O. M. Bakr, ACS Energy Letters, 2020, 5, 657-662.
- 7. S. Wu, R. Chen, S. Zhang, B. H. Babu, Y. Yue, H. Zhu, Z. Yang, C. Chen, W. Chen, Y. Huang, S. Fang, T. Liu, L. Han and W. Chen, *Nature Communications*, 2019, **10**, 1161.
- 8. J. Li, T. Jiu, C. Duan, Y. Wang, H. Zhang, H. Jian, Y. Zhao, N. Wang, C. Huang and Y. Li, *Nano Energy*, 2018, **46**, 331-337.
- 9. P.-H. Lee, T.-T. Wu, K.-Y. Tian, C.-F. Li, C.-H. Hou, J.-J. Shyue, C.-F. Lu, Y.-C. Huang and W.-F. Su, ACS Applied Materials & Interfaces, 2020, **12**, 45936-45949.
- 10. J.-H. Kim, Y. R. Kim, B. Park, S. Hong, I.-W. Hwang, J. Kim, S. Kwon, G. Kim, H. Kim and K. Lee, *Small*, 2021, **17**, 2005608.
- 11. X. Wang, K. Rakstys, K. Jack, H. Jin, J. Lai, H. Li, C. S. K. Ranasinghe, J. Saghaei, G. Zhang, P. L. Burn, I. R. Gentle and P. E. Shaw, *Nature Communications*, 2021, **12**, 52.

Fig. S11 - (a) Normalized transient photovoltage (TPV, left) and transient photocurrent (TPC, right) decay curves for the I-PSCs with and without CzNBr. (b) Electrochemical impedance spectroscopy (EIS) for I-PSCs with and without CzNBr. Nyquist plots for both devices obtained from the EIS measurement under open-circuit conditions with constant photoirradiation (1 sun, 100 mWcm⁻²), and the inset shows the fitting of the EIS curve to an equivalent circuit model. (c) Series resistance of J-V curves of the Cu electrode and ITO/0.05, 0.1, and 0.2 wt% of CzNBr/Cu. *J-V* curves for the I-PSC device (d) without and (e) with CzNBr under different scan rates from 10 to 1000 ms.

		$Bn (Ocm^{-2})$	Rs (Ocm ⁻²)	CDF		
CzNBr devices						
Table S3. Electroche	mical impedance sp	ectroscopy (EIS)	measurement fitted	parameters f	for the control	and

	Rp (Ωcm ⁻²)	Rs (Ωcm⁻²)	CPE.
w/o CzNBr	651.40	13.33	0.883
w/ CzNBr	45.14	23.50	0.990

Fig. S12 - Other photovoltaic parameters of the operational stability test of the control and CzNBr device. (a) PCE variations of the control and CzNBr device under continuous thermal annealing at 85°C for 1000 hours under a nitrogen gas atmosphere. (b) PCE variation obtained from the *J*-*V* characteristics of the control and CzNBr device after a thermal cycling test of 50 cycles at temperatures between -25°C and 85°C (PCE obtained every 10 cycles in ambient air conditions). (c) Environmental stability performance of the control and CzNBr device under ambient conditions (20-40% relative humidity, T = 25°C) and (d) thermal cycling test conditions for one cycle under high vacuum.

Fig. S13 - J-V curves for the cases of as-cast and thermally annealed (a) control and (b) CzNBr devices.

Fig. S14 - ToF-SIMS depth profiles throughout the as-cast and thermally annealed control and CzNBr device. Photographs taken for the control and CzNBr devices before and after 500 h of thermal annealing at 85°C in a N_2 -filled glove box. (a), (e) As-cast control device, (b), (f) thermally annealed control device, (c), (g) as-cast CzNBr device and (d), (h) thermally annealed CzNBr device.

Fig. S15 - The thermal stability test of BCP based device (ITO/PTAA/PFN-Br/MAPBI₃/PC₆₁BM/BCP/Cu) under continuous thermal annealing at 85°C for 50 hours under a nitrogen gas atmosphere

We tested PSC with BCP layer, which is typically used as cathode buffer layer rather than ion scavenging layer in the inverted PSCs. The only function of BCP layer is a modification of the WF of metal electrode to reduce the interfacial barrier at the interface for effectively charge carrier transport. Therefore, BCP based device exhibited relatively poor thermal stability compared to CzNBr based device.

Fig. S16 - (a)-(c) other CPEs (d) J-V curve of PSCs with other CPEs (A1, A2, and A3) (ITO/PTAA/PFN-Br/MAPBI₃/PC₆₁BM/A1, A2 or A3/Cu) and (e) The thermal stability test under continuous thermal annealing at 85°C for 150 hours under a nitrogen gas atmosphere

Photovoltaic performance of PSCs with other CPEs, which have similar chemical structures with CzNBr (A1, A2, and A3), are compared. Thermal stability test for these devices are also tested. However, the best result was obtained with CzNBr layer.

	Sweep Direction	V _{oc} (V)	J _{sc} (mA/cm²)	FF (%)	PCE(%)
A1	Forward	1.111	20.82	0.79	18.29
A2	Forward	1.113	20.65	0.80	18.32
A3	Forward	1.090	20.23	0.79	17.43

Table S4.	Summary	of	photovoltaic	parameter	corres	ponding	to the	J-V c	urve	of Fig	. S16
						L				- 0	

Dania Standara	Perovskite	CTI	Fabrication	PCE	Degradation Factors					
Device Structure	Layer		CTL	(%)	Heat (85°C)	Li	ght	Moisture (air)	Kei	
ITO/PTAA/perovskite/C ₆₀ / BCP/Cu	CsFAMAPbI	C ₆₀ /BCP/	Vacuum deposition	22.3	1000h in N $_2$ *	MPP∞	1000h in N ₂ *	-	1	
FTO/NiO/perovskite/PCB M/BCP/Cr(Cr ₂ O ₃)/Au	CsFAMAPbI	Cr (Cr ₂ O ₃)	Vacuum deposition	19.8	-	Light soaking (76mWcm ⁻²)	1800h in air*	-	2	
ITO/PEDOT:PSS/perovski te/C ₆₀ /BCP/Ag	CsSnFAPbI	C ₆₀ /BCP	Vacuum deposition	16.6	1000h in air≋	MPP, Sulphur lamp 0.8 sun	1000h in $\rm N_2^{\ast\!\!\times\!\!}$	-	3	
ITO/PTAA/perovskite/pas sivation/C ₆₀ /BCP/Cu	FAMAPbIBr	C ₆₀ /BCP	Room temperature⊽+ Vacuum deposition	21	-	МРР	25h	35 days	4	
ITO/NiO _x /perovskite/ZnO/ Al	MAPbI ₃	NiOx	Heat at 300°C for 60min⊽	16.1	-	-		60 days	5	
ITO/PTAA/perovskite/PC BM/TiOx/Ag	MAPbI ₃	TiOx	Heat at 100°C for 5min⊽	16.09	-	MPP	11h in N ₂	200h	6	
IT?PEDOT:PSS/perovskit e/PC ₇₁ BM/Ca/Al	MAPbI ₃	Ca/Al	Vacuum deposition	20.1	-	MPP	500s in N ₂	30 days*	7	
ITO/PTAA/perovskite/PC BM/TiOx/Cu	MAPbI ₃	TiOx	Vacuum Processing for 100hours	18.8	1000h in N ₂	MPP	1000h in N ₂	-	8	
FTO/NiO/perovskite/PCB M/Ag	MAPbI ₃	NiOx	Heat at 500°C for 30min	19.19	500h	Light soaking∞	1000h in $\mathrm{N_2}*$	-	9	
ITO/PTAA/perovskite//PC BM/C ₆₀ /BCP/Cu	MAPbI ₃	C ₆₀ /BCP	Vacuum deposition	21.1	-	-	-	940h	10	
ITO/PTAA/perovskite/PC BM/CzNBr/Cu	MAPbI ₃	CzNBr	Room temperature⊽	20.28	1000h in N ₂ (50 cycles for thermal cycling test)	MPP	350h in N ₂	1500h	In this work	

Fig. S17 - Summary of state-of-the-art selected I-PSCs, including PCE and various long-term operational stabilities. Only I-PSCs retaining 80% of their initial PCE are included. For photostability, the illumination source of the xenon lamp was used during measurement unless stated otherwise.

Reference for Fig. S17

1. X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan, Z. Huang, K. Song, J. Liu, J. Troughton, N. Gasparini, C. Zhou, Y. Lin, D.-J. Xue, B. Chen, A. K. Johnston, N. Wei, M. N. Hedhili, M. Wei, A. Y. Alsalloum, P. Maity, B. Turedi, C. Yang, D. Baran, T. D. Anthopoulos, Y. Han, Z.-H. Lu, O. F. Mohammed, F. Gao, E. H. Sargent and O. M. Bakr, *Nat. Energy*, 2020, 5, 131-140.

2. S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J. T.-W. Wang, S. Huettner, S. Buecheler, M. Fahlman, F. Gao and H. J. Snaith, *Nature*, 2019, 571, 245-250.

3. R. Prasanna, T. Leijtens, S. P. Dunfield, J. A. Raiford, E. J. Wolf, S. A. Swifter, J. Werner, G. E. Eperon, C. de Paula, A. F. Palmstrom, C. C. Boyd, M. F. A. M. van Hest, S. F. Bent, G. Teeter, J. J. Berry and M. D. McGehee, *Nat. Energy*, 2019, 4, 939-947.

4. X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, Xiao C. Zeng and J. Huang, *Nat. Energy*, 2017, 2, 17102.

5. J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco and Y. Yang, *Nat. Nanotech*, 2016, 11, 75-81.

6. H. Back, G. Kim, J. Kim, J. Kong, T. K. Kim, H. Kang, H. Kim, J. Lee, S. Lee and K. Lee, *Energy Enviro. Sci*, 2016, 9, 1258-1263.

7. C.-H. Chiang, M. K. Nazeeruddin, M. Grätzel and C.-G. Wu, *Energy Enviro. Sci*, 2017, 10, 808-817.

8. H. Back, G. Kim, H. Kim, C.-Y. Nam, J. Kim, Y. R. Kim, T. Kim, B. Park, J. R. Durrant and K. Lee, *Energy Enviro. Sci*, 2020, DOI: 10.1039/C9EE03736E.

9. Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, Z. Zhou, T. Noda and L. Han, *Adv. Mater*, 2017, 29, 1701073.

10. M. Zhang, Q. Chen, R. Xue, Y. Zhan, C. Wang, J. Lai, J. Yang, H. Lin, J. Yao, Y. Li, L. Chen and Y. Li, *Nat. Commun*, 2019, 10, 4593.sq