—Supporting Information— H_2O and CO_2 surface contamination of the lithium garnet $Li_7La_3Zr_2O_{12}$ solid electrolyte

Yuheng Li,[†] Asmee M. Prabhu,[‡] Tej S. Choksi,^{*,‡} and Pieremanuele Canepa^{*,†,¶}

†Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore

¶Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore

E-mail: tej.choksi@ntu.edu.sg; pcanepa@nus.edu.sg

Contents

$\mathbf{S1}$	Benchmark Tests on Dispersion Corrections	$\mathbf{S3}$
S2	Convergence Tests on Bulk-Like Percentage in Slab	S3
S3	Unit Cell of Slab Model	$\mathbf{S4}$
$\mathbf{S4}$	Tests on Single-Point Energy Cutoff	$\mathbf{S5}$
S5	Metal Sites' Local Environment and H_2O Dissociation	$\mathbf{S5}$
S6	Forced Dissociation of H_2O at High Coverage	$\mathbf{S6}$
$\mathbf{S7}$	Geometry of Surface Carbonates	$\mathbf{S6}$
S 8	Post-Adsorption Mulliken Charge	S 7
Ref	ferences	$\mathbf{S7}$

S1 Benchmark Tests on Dispersion Corrections

Table S1: Benchmark tests for dispersion corrections. Experimental and calculated lattice parameters a and c (in Å) for bulk tetragonal Li₇La₃Zr₂O₁₂. Mean absolute error (MAE, in Å) of the calculated lattice parameters. Surface energy (γ , in J m⁻²) for stoichiometric Zr-terminated (110) surface, calculated using slab models re-scaled with the bulk lattice parameters.

Method	a	С	MAE	γ
Experiment ^a	13.134	12.663		
PBE^{b}	13.204	12.704	0.060	1.52
PBE	13.228	12.708	0.078	1.46
PBE+D3	13.107	12.587	0.043	1.91
PBE+D3-BJ	13.082	12.586	0.060	1.96

^a Data from Awaka et al.¹

 $^{\rm b}$ Data from Canepa et al. 2

S2 Convergence Tests on Bulk-Like Percentage in Slab

Figure S1: Change of total energy for the slab model and CPU time as functions of bulk-like percentage. Total energy for the slab calculated with zero percent bulk-like region (all atomic positions were relaxed) is used as reference. The CPU time parameter is used to identify reasonable consumption of computational resources for the large 248-atom system.

S3 Unit Cell of Slab Model

Figure S2: Side view of the complete slab unit cell for the (010) Li-terminated off-stochiometry surface of $\text{Li}_7\text{La}_3\text{Zr}_2\text{O}_{12}$. The dashed lines and double-headed arrow show the center bulk-like region (40%), where the atomic positions are fixed during structural optimization.

S4 Tests on Single-Point Energy Cutoff

Table S2: Adsorption energy (ΔE_{ads} , in eV) from PBE (without D3-BJ) calculations, where optimizations were done with an energy cutoff of 440 eV, and single-point calculations were done with different energy cutoffs of 440 eV and 520 eV.

No./Molecule	Model Name	$\Delta E_{ads} @ 440 eV$	$\Delta E_{ads} @ 520 eV$
single H O	Li[3O]	-1.02	-1.02
single $\Pi_2 O$	Li[2O]	-0.97	-0.96
	$2/5 \mathrm{~ML}$	-0.99	-0.99
	$3/5~\mathrm{ML}$	-0.91	-0.90
multiple H_2O	$4/5~\mathrm{ML}$	-0.93	-0.93
	$5/5~\mathrm{ML}$	-0.93	-0.93
	$6/5~\mathrm{ML}$	-0.91	-0.91
single CO_2	O[LiLaZr]	-1.87	-1.86

S5 Metal Sites' Local Environment and H₂O Dissociation

Table S3: Distance (in Å) between water adsorption sites and their neighboring O atoms. Site is the adsorption site listed in the order of adsorption energy from more negative to more positive. ΔE_{ads} informs adsorption energy for the site. LiOH indicates whether the adsorbed H₂O molecule dissociates and promotes LiOH formation. Distance lists O–Site distance before adsorption for all O atoms bonded to the site. * denotes the surface O atom that forms bond with the dissociated proton from H₂O.

Site	$\Delta \mathrm{E}_\mathrm{ads}$	LiOH	Distance
Li[3O]	-1.21	Yes	$1.91, 1.92^*, 2.11$
Li[2O]	-1.14	No	1.83, 1.84
La[5O]	-0.85	No	2.20, 2.30, 2.32, 2.47, 2.74
La[6O]	-0.80	No	2.34, 2.38, 2.41, 2.47, 2.49, 2.73
Li[3O]	-0.65	No	1.97, 2.01, 2.08

S6 Forced Dissociation of H_2O at High Coverage

Table S4: Water adsorption energy (in eV/molecule) at increasing number of molecules (ML). Site is the adsorption site. $\delta\Delta E_{ads}$ informs the change of ΔE_{ads} upon the addition of a H₂O molecule. All water molecules were forced to dissociate before relaxation. In parallel to Table 1 in the main text, the number of dissociated water molecule (H₂O) after relaxation is indicated, and LiOH indicates whether the addition of a new H₂O molecule promotes LiOH formation. * denotes that a previously dissociated H₂O has become intact.

ML	Site	$\Delta \mathrm{E}_\mathrm{ads}$	$\delta \mathbf{\Delta E_{ads}}$	H_2O	LiOH
1/5	Li[3O]	-1.21		1	Yes
2/5	Li[2O]	-1.24	-0.03	2	Yes
3/5	La[5O]	-1.13	+0.11	2	No
4/5	La[6O]	-1.06	+0.07	2^*	Yes
5/5	Li[3O]	-1.10	-0.04	3	Yes
-6/5	Li[30]	-1.13	-0.03	3*	Yes

S7 Geometry of Surface Carbonates

Figure S3: Structure unit of CO_3^{2-} and bonded metal ions for (a) carbonate formed on the most favorable O[LiLaZr] site upon CO₂ adsorption and (b) bulk Li₂CO₃ from Ref. 3 (ICSD 66941).

S8 Post-Adsorption Mulliken Charge

Figure S4: Change of Mulliken charge for all adsorption sites and Mulliken charge of O in H_2O and C in CO_2 after adsorption. The horizontal dashed lines mark Mulliken charge of gas-phase H_2O and CO_2 .

References

- Awaka, J.; Kijima, N.; Hayakawa, H.; Akimoto, J. Synthesis and Structure Analysis of Tetragonal Li₇La₃Zr₂O₁₂ with the Garnet-Related Type Structure. *Journal of Solid State Chemistry* 2009, 182, 2046–2052.
- (2) Canepa, P.; Dawson, J. A.; Sai Gautam, G.; Statham, J. M.; Parker, S. C.; Islam, M. S. Particle Morphology and Lithium Segregation to Surfaces of the Li₇La₃Zr₂O₁₂ Solid Electrolyte. *Chem. Mater.* **2018**, *30*, 3019–3027.
- (3) Idemoto, Y.; Richardson, J. W.; Koura, N.; Kohara, S.; Loong, C.-K. Crystal Structure of (Li_xK_(1-x)2CO₃ (x = 0, 0.43, 0.5, 0.62, 1) by Neutron Powder Diffraction Analysis. Journal of Physics and Chemistry of Solids 1998, 59, 363–376.