Promoting interfacial charge transfer by B/N co-doping enable efficient ORR catalysis of carbon encapsulating Fe₂N

Zhi Xie ^a, Qiaoling Li ^{a,b}, Xingkai Peng ^a, Xuewei Wang ^a, Lingli Guo ^a, Xinghua Zhang ^a, Zunming Lu ^a, Xiaojing Yang ^a, Xiaofei Yu ^a, Lanlan Li ^{a,*}

^a School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China

^b School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China

*Corresponding Author. E-mail addresses: liabc@hebut.edu.cn (L. Li).

Supporting information

Electrochemical Measurements

In the process of cyclic voltammetry (CV) tests, the KOH electrolyte should be bubbled with N_2 or O_2 flow to achieve an oxygen-free or oxygen-saturated environment. For each working electrode test, 20 cycle CVs with a scan rate of 50 mV s⁻¹ were accomplished to make it stable. The polarization curves, which were carried out in O_2 saturated 0.1 M KOH solution, were scanned cathodically from 1.1 to 0.2 V at a scan rate of 5 mV s⁻¹ with varying rotating speed from 400 rpm to 2025 rpm. The electron transfer number (n) and kinetic current density (J_k) were determined according to the Koutecky–Levich equation:

$$\frac{1}{J} = \frac{1}{J_k} + \frac{1}{J_L} = \frac{1}{J_k} + \frac{1}{B\omega^{1/2}} \quad (1)$$

$$B = 0.20nFC_0 D_0^{2/3} v^{-1/6} \quad (2)$$

$$J_k = nFkC_0 \quad (3)$$

where J represent the measured electricity density, J_k is the Kinetic density and J_L is the diffusion-limited current density. Besides, F, C₀, D₀, v, k, and ω are the Faraday constant (96,485 C mol⁻¹), the saturation concentration of O₂ in the 0.1M KOH electrolyte (C₀=1.26×10⁻⁶ mol cm⁻³), the O₂ diffusion coefficient (1.9×10⁵ cm² s⁻¹), the solution viscosity (0.01 cm² s⁻¹), the electron-transfer rate constant and the rotation speed of the electrode (rad s⁻¹) respectively.

For the rotating ring disk electrode (RRDE) measurement, the working electrodes were prepared by the same method as the RDE. The peroxide percentage ($H_2O_2\%$, which serves as $2e^-$ pathway selectivity) and electron transfer number (n) were

calculated by the followed equations:

$$H_2 O_2 \% = 200 \times \frac{l_r/N}{l_d + l_r/N}$$
(4)
$$n = 4 \times \frac{l_d}{l_d + l_r/N}$$
(5)

Where I_d is the disk current, I_r is the ring current, and N is current collection efficiency of the Pt ring (N = 0.37, provided by the manufacturer).

Supporting Figures

Fig. S1 TGA curves of Fe₂N@BNC-2 (a) and Fe₂N@NC (b) under Air atmosphere from 25 to 800 °C with a heating rate of 10 °C min⁻¹.

Fig. S2 XRD patterns (a) and SEM image (b) of boron-containing Fe_2O_3 by hydrothermal. (c) B1s XPS spectra of boron-containing Fe_2O_3 .

Fig. S3 The size distribution of Fe₂N@BNC-2.

Fig. S4 (a) TEM image of Fe₂N@NC. (b) HRTEM image of Fe₂N@NC

Fig. S5 FTIR spectrum of the $Fe_2N@BNC-2$.

Fig. S6 XPS survey spectra of the various obtained materials.

Fig. S7 N bonding configurations and the corresponding contents in Fe₂N@BNC-2, Fe₂N@BNC-1 and Fe₂N@NC.

Fig. S8 XPS spectra of C 1s of the Fe₂N@NC (a), Fe₂N@BNC-1 (b) and Fe₂N@BNC-

2 (c).

Fig. S9 (a) The XRD of Fe₂N@BNC-2 before and after the removal of Fe₂N. (b) The LSV of Fe₂N@BNC-2 before and after the removal of Fe₂N.

The method is to place the ground sample (Fe₂N@BNC-2) in 2M HCl, pickling at 60°C for 12h. After centrifugation, washed and dried, as-obtained powder was denoted as Fe₂N@BNC-2-acid. As shown in Fig. S9a, the Fe₂N diffraction peak of the Fe₂N@BNC-2 disappeared, only the diffraction peak of the C (002), which indicates that the Fe₂N in the sample was successfully removed after the acid treatment. In Fig. S9b, Fe₂N@NC-2-acid sample exhibits an onset potential of 0.890 V and a half-wave potential of 0.730 V, which is very close to the ORR performance of BNC sample we prepared (E_{onset} = 0.877 V; E_{1/2} = 0.757 V).

Fig. S10 Electrochemical impedance spectra of $Fe_2N@NC$ and $Fe_2N@BNC-2$ in oxygen-saturated 0.1 M KOH solution.

Fig. S11 LSV curves with various rotation rates and corresponding K-L plots (j⁻¹ vs. $\omega^{-1/2}$) at different potentials of Fe₂N@BNC-2 (a, b), Fe₂N@NC (c, d) and commercial Pt/C (e, f) in 0.1 M KOH electrolyte.

Fig. S12 The K-L formula calculates the transfer electron number (n) for BNC, $Fe_2N@NC$, $Fe_2N@BNC-2$, and Pt/C (20 wt%).

Fig. S13 (a, b) CV curves of Fe₂N@BNC-2 and Fe₂N@NC as a function of the pyrolysis temperature at various scan rates within a non-Faraday potential window (1 V-1.1 V). (c) Linear fitting of capacitive currents of catalysts vs. scan rate.

The electrochemical active surface area (ECSA) is determined via Formula (1), where the double layer capacitance (C_{dl}) value was estimated by the linear slope of the fitted line which was plotted by capacitive currents versus scan rates, and the C_s value is adopted as ≈ 0.04 mF cm⁻².

$$ECSA = \frac{C_{dl}}{C_s}$$
 (1)

The ECSA of Fe₂N@BNC-2 and Fe₂N@NC is calculated to be 252.5 and 178.0 cm², respectively, further confirming the higher activity of Fe₂N@BNC-2.

Fig. S14 (a) The polarization curves of Fe₂N@NC, Fe₂N@BNC-0, Fe₂N@BNC-1, Fe₂N@BNC-2, Fe₂N@BNC-3 and Fe₂N@BNC-4 loaded on GC in a O₂-saturated 0.1 M KOH solution at a 5 mV s⁻¹ scan rate and a rotation rate of 1600 rpm. (b) Half-wave potential of catalysts with different boron precursor content, the corresponding relationship with Figure a is as follows: Fe₂N@NC (No boron), Fe₂N@BNC-0 (5 mg), Fe₂N@BNC-1 (8 mg), Fe₂N@BNC-2 (11 mg), Fe₂N@BNC-3 (14 mg), Fe₂N@BNC-4 (20 mg).

Half-wave potential of catalysts with different atomic ratio of boron, the corresponding relationship with Figure 3f are as follows: Fe₂N@NC (No boron), Fe₂N@BNC-1 (1.00 at %), Fe₂N@BNC-2 (1.22 at %), Fe₂N@BNC-3 (3.16 at %). N content of catalysts with different atomic ratio of boron, the corresponding relationship in Figure 3f are as follows: Fe₂N@NC (0.45 at %), Fe₂N@BNC-1 (1.33 at %), Fe₂N@BNC-2 (3.02 at %), Fe₂N@BNC-3 (2.78 at %). The relationship between C-N-B content in wrapped layer and atomic ratio of boron as follows: Fe₂N@BNC-3 (26.1 %).

Fig. S15 The optimized structure of $Fe_2N@C_{59}N$ (a) and $Fe_2N@C_{58}BN$ (b).

As shown in the Fig. S15, we have constructed Fe₂N@C₅₉N and Fe₂N@C₅₈BN catalyst models based on C₆₀ and Fe₂N clusters. After optimizing the structure, it was found that the shell of the catalyst did not undergo major structural changes, indicating that the constructed model was stable. The bond lengths between the C, B, N atoms in the Fe₂N@C₅₈BN shell and the Fe atom in Fe₂N are 2.10, 2.05, and 1.98 Å, respectively. The bond lengths between C, N atoms in the shell of Fe₂N@C₅₉N and Fe atoms in Fe₂N are 1.94 and 1.97 Å.

Fig. S16 The projected density of states of Fe₂N@C₅₉N (a, b, c) and Fe₂N@C₅₈BN (d, e, f).

Fig. S17 Effect of SCN⁻ on the ORR activity of Fe₂N@BNC-2 in O₂-saturated 0.1 M KOH solution.

Samples	XPS composition (at %)							
	Fe	С	0	Ν	В			
Fe ₂ N@BNC-1	0.52	94.14	3.01	1.33	1.00			
Fe ₂ N@BNC-2	0.38	92.75	2.63	3.02	1.22			
Fe ₂ N@NC	0.97	95.06	3.15	0.82	-			

Table S1. The contents of Fe, C, O, N and B in samples.

Catalyst	Onset potential (V vs. RHE)	Half-wave potential (V vs. RHE)	Current density at 0.3 V (mA·cm ⁻²)	Years	Ref.
Fe ₂ N@BNC-2	0.981	0.844	6.06	This work	This work
FeSe@NC-900 ¹	0.970	0.800	5.40	2021	J. Mater. Chem. A
Co/CoO@NSC ²	0.975	0.835	5.50	2022	J. Energy Chem.
N-hG6 ³	0.910	0.833	5.28	2020	Carbon
Fe ₂ N@NPC-500 ⁴	0.927	0.790	4.85	2017	Nanoscale
Co-N/CNTs-900 ⁵	0.908	0.784	5.66	2021	J. Energy Chem.
BN/C ⁶	0.880	0.800	5.25	2020	Carbon
Fe ₃ C@C-900 ⁷	0.910	0.800	5.28	2017	Carbon
BCN ⁸	0.940	0.820	5.50	2017	ACS. Energy Lett.
Fe@C ⁹	0.820	0.712	4.50	2016	J. Am. Chem. Soc.
CMN-231H ¹⁰	0.945	0.780	5.80	2021	Chem. Eng. J.
Fe-Mn ₃ O ₄ HYSNBs ¹¹	1.02	0.780	5.85	2022	Chem. Eng. J.
Fe _x N/NGA ¹²	0.965	0.815	5.78	2014	Adv. Funct. Mater.
Fe _{1-x} S@NSC-24 ¹³	0.980	0.700	5.05	2021	J. Energy Chem.
MnO@FLC ¹⁴	0.935	0.813	5.38	2016	J. Mater. Chem. A
M ₃ C-GNRs ¹⁵	0.950	0.820	4.60	2015	ACS Nano
Fe-N-C/HPC-NH3 ¹⁶	0.945	0.803	6.01	2019	Nano Research
Fe/N-CNTs ¹⁷	0.960	0.810	5.05	2016	J. Mater. Chem. A
B ₂ NGFe ₂ -800 ¹⁸	0.980	0.830	4.95	2016	Phys. Chem. Chem. Phys.

 Table S2. Comparison of various ORR electrocatalysts in alkaline solution.

References

- Y. Cao, S. Huang, Z. Peng, F. Yao, X. Li, Y. Liu, H. Huang and M. Wu, J. Mater. Chem. A, 2021, 9, 3464-3471.
- 2. D. Zhou, H. Fu, J. Long, K. Shen and X. Gou, J. Energy Chem., 2022, 64, 385-394.
- 3. Y. Bian, H. Wang, J. Hu, B. Liu, D. Liu and L. Dai, Carbon, 2020, 162, 66-73.
- 4. X. Huang, Z. Yang, B. Dong, Y. Wang, T. Tang and Y. Hou, *Nanoscale*, 2017, 9, 8102-8106.
- X. Wang, X. Xi, G. Huo, C. Xu, P. Sui, R. Feng, X.-Z. Fu and J.-L. Luo, *J. Energy Chem.*, 2021, 53, 49-55.
- R. Zhao, Q. Li, Z. Chen, V. Jose, X. Jiang, G. Fu, J.-M. Lee and S. Huang, *Carbon*, 2020, 164, 398-406.
- 7. A. Kong, Y. Zhang, Z. Chen, A. Chen, C. Li, H. Wang and Y. Shan, Carbon, 2017, 116, 606-614.
- J. Wang, J. Hao, D. Liu, S. Qin, D. Portehault, Y. Li, Y. Chen and W. Lei, ACS. Energy Lett., 2017, 2, 306-312.
- W. J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L. J. Zhang, J. Q. Wang, J. S. Hu, Z. Wei and L. J. Wan, J. Am. Chem. Soc., 2016, 138, 3570-3578.
- 10. B. Chen, H. Miao, M. Yin, R. Hu, L. Xia, C. Zhang and J. Yuan, Chem. Eng. J., 2021, 417.
- 11. T. Li, Y. Hu, K. Liu, J. Yin, Y. Li, G. Fu, Y. Zhang and Y. Tang, Chem. Eng. J., 2022, 427.
- 12. H. Yin, C. Zhang, F. Liu and Y. Hou, Adv. Funct. Mater., 2014, 24, 2930-2937.
- 13. Z. Li, W. Wang, M. Zhou, B. He, W. Ren, L. Chen, W. Xu, Z. Hou and Y. Chen, *J. Energy Chem.*, 2021, **54**, 310-317.
- H. Cheng, K. Xu, L. Xing, S. Liu, Y. Gong, L. Gu, L. Zhang and C. Wu, J. Mater. Chem. A, 2016, 4, 11775-11781.
- 15. X. Fan, Z. Peng, R. Ye, H. Zhou and X. Guo, ACS Nano, 2015, 9, 7407-7418.
- X. Liu, H. Liu, C. Chen, L. Zou, Y. Li, Q. Zhang, B. Yang, Z. Zou and H. Yang, *Nano Research*, 2019, **12**, 1651-1657.
- 17. Y. Liu, H. Jiang, Y. Zhu, X. Yang and C. Li, J. Mater. Chem. A, 2016, 4, 1694-1701.
- H. Feng, L. Wang, L. Zhao, C. Tian, P. Yu and H. Fu, *Phys. Chem. Chem. Phys.*, 2016, 18, 26572-26578.