Electronic Supplementary Information (ESI)

Mobility and phase transitions of the [EMIm⁺][FSI-] ionic liquid confined in micro- and mesoporous carbons

Paula Ratajczak^{a*}, Christopher Bachetzky^{b*}, Zhuanpei Wang^{a*}, Agnieszka Chojnacka^a, Natalia Fulik^b, Emmanuel Pameté^a, SEM Pourhosseini^a, Eike Brunner^b, Francois Beguin^{a†}

^a *Poznan University of Technology, Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznan, Poland* ^b *TU Dresden, Faculty of Chemistry and Food Chemistry, 01062 Dresden, Germany*

** co-first authorship.*

† *corresponding author: francois.beguin@put.poznan.pl*

1. Deconvolution of the DSC thermograms of IL@STC-20-1 and IL@STC-12-1

Figure S1. DSC thermograms and their fitting by using two Gaussian curves for [EMIm⁺][FSI⁻] confined in the STC-20-1 and STC-12-1 carbons $(IL@STC-20-1$ and $IL@STC-12-1$, respectively) upon (a) cooling and b) heating at a rate of 10 K min⁻¹.

2. NMR spectra of [EMIm⁺][FSI-] confined in the micro- and mesoporous carbons

Figure S2. Static ¹H NMR spectra of [EMIm⁺][FSI⁻] confined in (a, b) Maxsorb, (c, d) STC-12-1 and (e, f) STC-20-1 under (a, c, e) cooling and (b, d, f) heating. In order to allow a quantitative comparison between the spectra, the detected intensities were normalized by multiplication with the factor *T*/293 K (which accounts for the temperature-dependence of the magnetization) [1].

Figure S3. Deconvolution of the static ¹H NMR spectra of IL@STC-12-1 recorded at (a) K, (b) 208 K and (c) 193 K under cooling (data from **Figure S2**c).

Figure S4. TPD analysis of the Maxsorb, STC-12-1, and STC-20-1 carbons: (a) CO_2 and (b) CO desorption.

Table S1. TPD data of the Maxsorb, STC-12-1, and STC-20-1 carbons (mass loss at 1223 K, amount of desorbed CO, $CO₂$, H₂O, and total amount of evolved oxygen (O)).

Carbon	Mass loss	CO	CO ₂	H ₂ O	Ω
	(wt. %)		$(\mu \text{mol g}^{-1})$ $(\mu \text{mol g}^{-1})$ $(\mu \text{mol g}^{-1})$		$(wt. \%$
Maxsorb 3.0		319	87	248	1.6
$STC-12-1$ 3.4		441	135	519	2.5
$STC-20-1$ 2.0		292	53	328	1.5

Figure S4 shows the temperature programmed desorption (TPD) rates of $CO₂$ and CO for the three carbons; the quantitative data as mass loss and amount of desorbed CO , CO_2 , H_2O , and oxygen are reported in Table S1. The $CO₂$ desorption observed for Maxsorb between 400 and 950 K (**Figure S4**a) reveals the presence of carboxylic functionalities (evolving up to around 800 K) and lactones (evolving between 700 and 950 K) [2]. Besides, the MS thermograms in **Figure S4**b indicate that Maxsorb contains a small amount of carbonyl groups, namely aldehydes/ketones and quinones, desorbed as CO up to about 750 K and above 1000 K, respectively [2, 3]. On the other hand, the surface of the STC-12-1 carbon is characterized by the presence of carboxylic functionalities (evolving as $CO₂$ up to around 700 K; **Figure S4**a) and anhydrides (releasing $CO₂$ as well as CO between 600 and 950 K; Figure S2a and b, respectively) [3]. In the case of the STC-20-1 carbon, the $CO₂$ desorption (Figure S2a) is related to the decomposition of carboxylic functionalities (evolving up to around 750 K) as well

as a very small amount of lactones (evolving between 700 and 1000 K), whereas CO evolution (Figure 2b) indicates the presence of a small number of aldehydes/ketones (evolving between 500 and 800 K) [2, 3]. The slightly higher (by 1 wt.%) surface oxygen content in STC-12-1 than in STC-20-1 (**Table S1**) is probably related to a higher density of siloxane and silanol (charged and uncharged, viz. SiO- and SiOH, respectively) groups on the surface of the silica template of STC-12-1, due to the smaller diameter of the $SiO₂$ particles (12 nm) [4]. Indeed, during the final thermal treatment of the carbon/silica composite at 1173 K, oxygenated functionalities can be created on the carbon surface by carboreduction of the SiO- and SiOH surface species of silica [5]. Overall, the low mass loss and low amount of evolved oxygen confirm that the three carbons are surface clean materials with a negligible amount of surface oxygenated functionalities.

4. Volume of a monolayer of [EMIm⁺][FSI-] confined in mesoporous carbons

The cumulative DFT surface area of the STC-12-1 and STC-20-1 carbons vs. their pore size is presented in Figure S5. The surface area due to mesopores (S_{meso} for pores between ca. 5 and 15 nm) was estimated by subtracting the surface area due to micropores (S_{micro} for pores below 2 nm) from the total surface area $(S_{DFT} = S_{micro} + S_{meso}$; the cumulative surface area values due to micropores and mesopores are reported in **Table S2**).

Figure S5. Cumulative DFT surface area vs. pore diameter of the STC-12-1 and STC-20-1 carbons; the vertical arrows represent the respective values of surface area due to micro- and mesopores (S_{micro} and S_{meso} , respectively); note that, similarly to the pore size distribution shown in **Figure 1a** of the manuscript, the curves of the two carbons are totally flat between ca. 1 and 7 nm.

Table S2. Cumulative surface area due to micro- and mesopores (S_{micro} and S_{meso}, respectively) for the STC-12-1 and STC-20-1 carbons.

Carbon	S_{DFT} (m ² g ⁻¹)	S_{micro} $(m^2 g^{-1})$	$\frac{\mathbf{S}_{\text{meso}}}{(\mathbf{m}^2 \mathbf{g}^{-1})}$
STC-12-1	1130	223	907
STC-20-1	1167	265	902

The volume V_x occupied by a single IL molecule can be estimated by applying the **Equation (S1)**:

$$
V_x = \frac{M}{\rho N_A} \quad \text{[cm}^3\text{]}
$$
 (S1),

where *M* is the molecular mass of [EMIm⁺][FSI⁻] equal to 291 g mol⁻¹, ρ – density of [EMIm⁺][FSI⁻] of 1.44 g cm⁻³, and N_A – the Avogadro number, giving $V_x = 336 \times 10^{-24}$ cm³. Since the ions in direct contact with the mesopore walls may be randomly oriented, the average volume of one molecule can be represented by a cube of side $a_x = (336 \times 10^{-24})^{1/3} = 6.95 \times 10^{-8}$ [cm]; hence, the thickness of an IL monolayer is $d_{mono} = 6.95 \times 10^{-8}$ [cm].

Henceforward, the volume occupied by the IL in direct contact with the walls, *Vmono*, can be calculated by applying the **Equation (S2**):

$$
V_{mono} = S_{meso} \times d_{mono} \times 10^4 \text{ [cm}^3 \text{ g}^{-1} \text{]}
$$
 (S2),

giving $V_{mono} = 0.63$ cm³ g⁻¹, for the two carbons. Then, by subtracting V_{mono} from V_{meso} (see **Table** 1), V_{meso} - V_{mono} values of 1.43 and 1.74 cm³ g⁻¹ in IL@STC-12-1 and IL@STC-20-1, respectively, are obtained to represent the molecules located close to the mesopore center. Finally, the ratio of the volumes of [EMIm⁺][FSI⁻] in contact with the mesopore walls and located close to the mesopores center, viz. V_{mono} : $(V_{meso} - V_{mono})$, is 0.44 and 0.36 for IL@STC-12-1 and IL@STC-20-1, respectively.

References:

1. A. Abragam, The Principles of Nuclear Magnetism, Clarendon Press, 1961

2. G. Hotová, V. Slovák, O. S. G. P. Soares, J. L. Figueiredo and M. F. R. Pereira, *Carbon*, 2018, **134**, 255-263.

3. U. Zielke, K. J. Hüttinger and W. P. Hoffman, *Carbon*, 1996, **34**, 983-998.

4. H. E. Bergna and W. O. Roberts, *Colloidal Silica: Fundamentals and Applications*, CRC Press, Boca Raton, 2005.

5. J. J. Biernacki and G. P. Wotzak, *J. Am. Ceram. Soc.*, 1989, **72**, 122-129.