Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Synergistic Modulation on the Thermoelectric Performance of Meltspun p-Type Mg₂Sn via Na₂S and Si Alloying

Yuling Huang^{a,1}, Sikang Zheng^{a,1}, Huijun Liao^e, Saisai Qiao^a, Guang Han^{*b,c,e}, Guoyu Wang^d, Zhengyong Huang^e, Jian Li^e, Xu Lu^{*a,e}, Xiaoyuan Zhou^{*a,c,f}

^a Center for Quantum Materials & Devices and College of Physics, Chongqing University, Chongqing 401331, P. R. China

^b College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China

^c National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing,
400044, P. R. China

^d Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China

^e State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400030, P. R. China

^f Analytical and Testing Center, Chongqing University, Chongqing 401331, P. R. China

Corresponding authors: Xiaoyuan Zhou, xiaoyuan2013@cqu.edu.cn

Guang Han, guang.han@cqu.edu.cn

Xu Lu, <u>luxu@cqu.edu.cn</u>

¹ These two authors contribute equally to this work.

Calculation of density of state effective mass by single parabolic band model ¹

$$S(\eta) = \frac{k_B}{e} \left[\frac{(r+5/2)F_{(r+2/3)}(\eta)}{(r+3/2)F_{(r+1/2)}(\eta)} - \eta \right]$$
$$n_H = \frac{1}{eR_H} = \frac{\left(2m^*k_BT\right)^{3/2}(r+3/2)^2F_{(r+1/2)}(\eta)}{3\pi^2\hbar^3 (2r+3/2)F_{(2r+1/2)}(\eta)}$$

where η , $k_{\rm B}$, e, r, $R_{\rm H}$, m^* , T and \hbar are reduced Fermi level, the Boltzmann constant, the electronic charge, carrier scattering parameter, the Hole coefficient, effective mass, absolute temperature and the reduced Pulank constant, respectively.

$$F_j(\eta) = \int_0^\infty \frac{\xi^j d\xi}{1 + e^{(\xi - \eta)}}$$

where $F_i(\eta)$ is the Fermi integral.

Calculation of thermal conductivity by Debye-Callaway model

In order to understand the impacts of different phonon scattering process and lattice thermal conductivity, Debye-Callaway model and the relaxation time are carried out here to calculate the contribution of different scattering effects^{2,3}. Within the Debye-Callaway model, the lattice thermal conductivity can be expressed via the following equation:

$$\kappa_{L} = \frac{k_{B}}{2\pi^{2}\nu} \left(\frac{k_{B}}{\hbar}\right)^{3} T^{3} \int_{0}^{\theta_{D}/T} \frac{x^{4}e^{x}}{\tau_{c}^{-1}(e^{x}-1)^{2}} dx$$

where $k_{\rm B}$ is the Boltzmann constant, v is the the average sound velocity, \hbar is the reduced Plank constant, T is the absolute temperature, $\theta_{\rm D}$ is the Debye temperature, $\tau_{\rm c}$ is the phonon relaxation time, and x is defined as $x = h\omega/k_{\rm B}T$, where ω is the phonon frequency.

In this work, we took Umklapp scattering (τ_U), grain boundary scattering (τ_B), and point defect scattering (τ_{PD}) into consideration. The phonon relaxation time can be given by:

$$\tau_{U}^{-1} = \frac{h\gamma^{2}\omega^{2}T}{Mv^{2}\theta_{D}}exp\left(-\frac{\theta_{D}}{3T}\right)$$

$$\tau_{B}^{-1} = \frac{v}{L}$$

$$\tau_{PD}^{-1} = \frac{V\omega^{4}}{4\pi v^{2}}\Gamma$$

$$\tau_{c}^{-1} = \tau_{U}^{-1} + \tau_{B}^{-1} + \tau_{PD}^{-1} = B\omega^{2}Te^{-\theta_{D}/3T} + \frac{v}{L} + A\omega^{4}$$

where *M* is average atomic mass, γ is the Gruneisen parameter, θ_D is the Debye temperature, *L* is grain size, *V* is average atomic volume, and Γ is point defect scattering parameter of $(Mg_2Sn_{0.9}Si_{0.1})_{0.93}(Na_2S)_{0.07}^4$.

The mass-fluctuation phonon-scattering parameter can be given by:

$$\Gamma = \sum_{i} f_i \left(1 - \frac{M_i}{M} \right)^2$$

where M is the mass of a unit cell, f_i is the fraction of unit cells with mass M_i , and M is the average mass of all cells.

Figure S1 EDS spectra and chemical compositions of $(Mg_2Sn_{1-y}Si_y)_{0.93}(Na_2S)_{0.07}$ (y = 0, 0.1, 0.2).

Figure S2 Temperature dependence of calculated Lorentz constant for $(Mg_2Sn)_{1-x}(Na_2S)_x$ (x = 0, 0.03, 0.05, 0.07), and $(Mg_2Sn_{1-y}Si_y)_{0.93}(Na_2S)_{0.07}$ (y = 0.1, 0.2) compounds.

Figure S3 XRD patterns for the $(Mg_2Sn)_{1-x}(Na_2S)_x$ (x = 0, 0.03, 0.05, 0.07) sample, and $(Mg_2Sn_{1-y}Si_y)_{0.93}(Na_2S)_{0.07}$ (y = 0.1, 0.2) samples. All the diffraction peaks can be indexed to Mg₂Sn phase with an anti-fluorite structure.

Figure S4 The relationship between Seebeck coefficient and carrier concentration of $(Mg_2Sn_{1-y}Si_y)_{0.93}(Na_2S)_{0.07}$ (y = 0, 0.1, 0.2) compounds. The dashed line is the Pisarenko curve calculated by the SPB model ($m^* = 1.0 m_e$).

Figure S5 The temperature-dependent (a) electrical conductivity, (b) Seebeck coefficient, (c) power factor, (d) total thermal conductivity, (e) lattice and bipolar thermal conductivity, and (f) zT values of $(Mg_2Sn_{0.9}Si_{0.1})_{0.93}(Na_2S)_{0.07}$ measured during two consecutive cycles during heating up to 723 K.

Table S1 Room temperature properties of the $(Mg_2Sn)_{1-x}(Na_2S)_x$ (x = 0, 0.03, 0.05, 0.07), and $(Mg_2Sn_{1-y}Si_y)_{0.93}(Na_2S)_{0.07}$ (y = 0.1, 0.2) compounds.

Composition	carrier concentration	Hall mobility	Effective
	(cm ⁻³)	$(cm^2 V^{-1} s^{-1})$	$(cm^2 V^{-1} s^{-1})$
x = 0	-5.3×10 ¹⁸	153	1.0
<i>x</i> = 0.03	2.8×10 ¹⁹	82	1.0
<i>x</i> = 0.05	3.1×10 ¹⁹	93	1.1
x = 0.07	9.8×10 ¹⁹	69	1.1
<i>y</i> = 0.1	6.5×10 ¹⁹	77	1.1
<i>y</i> = 0.2	4.3×10 ¹⁹	75	1.2

Parameter	Values	
Longitudinal sound velocity v_1 (m s ⁻¹)	4324	
Transverse sound velocity v_t (m s ⁻¹)	3601	
Average sound velocity v (m s ⁻¹)	3787	
Gruneisen parameter γ	1.41	
Debye temperature $\theta_{\rm D}$ (K)	270	
Average atomic volume $V(m^3)$	7.5×10 ⁻²⁹	
Grain size L (µm)	1	

Table S2 Room temperature physical parameters of $(Mg_2Sn_{0.9}Si_{0.1})_{0.93}(Na_2S)_{0.07}$ used to calculate κ_L based on different scattering process mentioned above.

References

- 1. J.-W. Shen, Z.-W. Chen, S.-Q. Lin, L.-L. Zheng, W. Li and Y.-Z. Pei, *J. Mater. Chem. C*, 2015, **4**, 209–214.
- 2. J. Callaway, and H. C. von Baeyer, *Phys. Rev.*, 1960, **120**, 1149–1154.
- 3. H.-Y. Xie, S.-Q. Hao, S.-T. Cai, T. P. Bailey, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, *Energy Environ. Sci.*, 2020, **13**, 3693–3705.
- 4. D. T. Morelli, J. P. Heremans, and G. A. Slack, *Phys. Rev. B*, 2002, 66, 195304.