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Machine Learning and Feature Importance.

The shallow and deep learning algorithms were implemented using sklearn' and
keras? in python language. The eligible catalysts are labeled as “1” while ineligible
are “0”. Cross-validation was adopted for a robust way of evaluating generalization
ability. The most commonly used approaches of cross-validation with k-fold cross-
validation and 4-fold cross-validation were used for model selection. Decision tree
(DT), random forest (RF) and fully connected neural network (FCNN) were used for
model evaluation. Permutation importance (PI)* method implemented by eli5 package
was utilized to the analysis of feature importance for RF algorithms.

Decision tree (DT) is a simple but widely used model in machine learning>®. It
can divide input space into different regions gradually. The most commonly used
algorithm is classification and regression tree (CART) which is based on binary tree
structure. And the default algorithm of decision tree in scikit-learn is CART. For each
node, it creates two subregions according to Gini index, which is defined by:
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where Pk is the probability of class k. K is the total number of classes. Next, Gini

index will be calculated in the condition of feature A.
D,={(xy)€D | A(x)=a},D,=D-D,
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where feature 4 splits samples set D into subsets ~'1 and b 2, For each node, condition

Gini condition is calculated and the feature X which possesses the maximum value of
Gini condition is regarded as the splitting feature. In other words, the splitting feature
in the root node is the most important feature for the question. Based on this principle,
testing the samples recursively and assigning them to child nodes until samples reach
the leaf node. After the process of growing of tree, pruning is used for generalization
enhancement. Explicit visualization and explanation easily are the greatest advantages
of decision tree. The visualization diagram of decision tree in this work was plotted
by graphviz 0.16.

Random forest (RF) is an ensemble algorithm based on DT which adopts bagging
mechanism>°. It is a more robust algorithm than single DT with a collection of
randomized, independent DTs. Each DT makes the prediction independently, then
giving the eventual decision according to the principle “Minority is subordinate to
majority”. Different from DT algorithm, RF is hard to visualize. Instead, feature
importance comparison of RF is the common method to measure dominant feature.
The feature importance of permutation importance was performed by e/i5 0.11.0.

Fully connected neural network (FCNN) is a stack of multilayer perception to



learn representations with multiple abstraction level’. The FCNN usually consists of
input layer, multiple hidden layers and output layer, each of them can be adjusted by
backpropagation algorithm. The formula of FCNN can be described by:

f) = FOFO(FD(wx + b)) + b) + b....

where W is the weights and D is the bias of the network. An objective function which
can measure errors between output value and label of training data is computed in the
training process. The adjustable parameters called weights and bias are updated by
gradient descent algorithm. A non-linear function f(-) is usually followed by the layer
to create nonlinear representations, such as rectified linear unit (ReLU)
f(z) =max (0,2). The output layer is activated by sigmoid function to represent
probability, which can be formulated:

o(x) =
1+e™”*

The FCNN used in this work were constructed by keras 2.6.0 while other machine
learning algorithms were implemented by scikit-learn 0.23.2.

Test data Training data

Fig. S1 Sketch map for 4-fold cross-validation. Each fold contains 26 data point
before data augmentation. Different colors (blue and red) represent the class 0 or 1.
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Fig. S2 The decision process of decision Tree (DT). The blue and yellow boxes
represent positive and negative samples.
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Fig. S3 The ranking of most important features by random forest (RF) using
permutation importance (PI) method. Feature 1 to 11 represent Z, AHy, R, y, Ei, N, Nie.
& 0, Ltm. s, Lmo and f, respectively.
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Fig. S4 The DOS of (a) pristine, (b) 1Bs@MoS, and (c) 2Bs@MoS,. The black and

blue curves represent total DOS and partial density of states (PDOS) of substitutional
boron atom. The Fermi level represented by dashed lines is set to zero.
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Fig. S5 (a) The differential charge density of 1Bs-Ti@MoS, with the adsorbed N,.
The red (green) color represents the positive (negative) of electrons upon adsorption
of N,. (b) The atomic structure after AIMD simulation with 10 ps. (¢) Fluctuations of

temperature and energy of AIMD simulation at 400 K for 10 ps with a time step of 2
fs.
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Fig. S6 (a) The differential charge density of 1Bs-V@MoS, with the adsorbed N,.
The red (green) color represents the positive (negative) of electrons upon adsorption
of N,. (b) The atomic structure after AIMD simulation with 10 ps. (¢) Fluctuations of

temperature and energy of AIMD simulation at 400 K for 10 ps with a time step of 2
fs.
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Fig. S7 (a) The differential charge density of 2Bs-Mn@MoS, with the adsorbed N,.
The red (green) color represents the positive (negative) of electrons upon adsorption
of N,. (b) The atomic structure after AIMD simulation with 10 ps. (¢) Fluctuations of

temperature and energy of AIMD simulation at 400 K for 10 ps with a time step of 2
fs.
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Fig. S8 (a) The differential charge density of 1Bs-Os@MoS, with the adsorbed N,.
The red (green) color represents the positive (negative) of electrons upon adsorption
of N,. (b) The atomic structure after AIMD simulation with 10 ps. (¢) Fluctuations of

temperature and energy of AIMD simulation at 400 K for 10 ps with a time step of 2
fs.
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Fig. S9 The binding energies (£y,) of transition metals (Ti, V, Mn and Os) with
different fraction of boron doping. Ey, = Egptm — Esub — ETm, Where Egypv, Esup and
Er\ represent the energies of nBs-TM@MoS, (n =0, 1, 2, 3), nBs@MoS, (n=0, 1, 2,
3) and single-atom TM, respectively.



Tab. S1 Gibbs free energy change of N, absorption and first hydrogenation via end-
on and side-on pattern for all SAC candidates.

SACs N, absorption | First hydrogenation | N, absorption | First hydrogenation
rp .
(end-on)/ev | (end-on)/eV | (sideon)/ev |  (side-on)/eV

Pristine-Sc -0.99 0.86 -0.94 0.25
Pristine-Ti -1.22 0.96 -1.06 0.31
Pristine-V -1.21 1.03 -0.74 0.49
Pristine-Cr -0.96 0.79 -0.83 0.76
Pristine-Mn -1.22 0.87 -1.02 0.87
Pristine-Fe -1.17 0.88 -1.52 1.69
Pristine-Co -1.30 0.94 -0.73 0.92
Pristine-Ni -1.02 1.74 -0.53 1.69
Pristine-Cu -0.50 1.30
Pristine-Zn |
Prisine-Zr |  -123 | 071 a2 | o5
Pristine-Mo -1.33 0.44 -1.04 0.27
Pristine-Tc -1.20 0.39 -0.60 0.43
Pristine-Ru -1.12 0.69 -0.53 0.70
Pristine-Rh -1.03 1.08 -0.59 0.90
Pristine-Pd -0.66 1.76
Pristine-Ag -0.22 1.55
Pristine-Cd |
Pristine-Hf | 127 | 0.59 T 34 ool
Pristine-Ta -1.69 0.49 -1.54 -0.20
Pristine-W -1.66 0.25 -1.79 0.18
Pristine-Re -1.71 0.27 -1.33 0.35
Pristine-Os -1.60 0.37 -0.87 0.46
Pristine-Ir -1.44 0.65 -0.78 0.69
Pristine-Pt -1.07 1.70 -0.53 1.62
Pristine-Au

1Bs-Sc -0.47 1.52 -0.43 0.87

1Bs-Ti -0.76 0.64 -0.58 0.16

1Bs-V -0.89 0.79 -0.71 0.22

1Bs-Cr -1.69 1.65 -1.53 1.18




1Bs-Mn -0.86 0.95 -0.06 0.48
1Bg-Fe -0.35 0.11 -1.25 1.51
1Bs-Co -1.19 0.87 -0.67 0.76
1Bs-Ni -2.09 2.12 -1.79 2.35
1Bs-Cu 421 3.41
1Bs-Zn 0.06 1.13
1Bg-Zr 111 0.67 -0.95 0.46
1Bs-Mo -1.04 0.45 -1.15 0.31
1Bs-Tc -0.98 0.45 -0.61 0.44
1Bs-Ru -1.00 0.61 -0.62 0.51
1Bs-Rh -0.91 0.97 -0.63 1.00
1Bg-Pd -0.64 1.12 -0.31 1.52
1Bs-Ag -0.35 1.85
1Bs-Cd
1Bg-Hf -0.79 0.74 -0.72 -0.28
1Bs-Ta -1.31 0.55 -1.42 0.04
1Bs-W -1.52 0.40 -1.67 0.02
1Bs-Re -1.54 0.24 -1.39 0.32
1Bs-Os -1.50 0.25 -1.19 0.28
1Bg-Ir -1.42 0.7 -1.04 0.77
1Bs-Pt 112 1.07 -0.56 1.15
1Bs-Au -0.31 1.50
2Bs-Sc -0.42 -0.53
2Bs-Ti -0.24 -0.23
2Bs-V -0.53 0.92 -0.91 0.89
2Bs-Cr -0.43 0.44 -0.84 0.83
2Bg-Mn -0.26 0.39 -0.26 0.4
2Bg-Fe 112 0.58 -1.01 0.73
2Bs-Co -1.75 0.83 -1.15 0.98
2Bg-Ni -1.69 1.31 -1.16 1.22
2Bg-Cu -0.37 1.46
2Bg-Zn -0.14 1.52
2Bg-Zr -0.20 1.46
2Bg-Mo -0.64 1.08
2Bg-Tc -0.47 0.76 -0.17 0.43
2Bs-Ru -0.94 1.07 -0.54 0.94




2Bs-Rh -1.04 0.99 -0.71 0.99
2Bs-Pd -0.30 1.30

2Bs-Ag -0.21 1.67

2Bs-Cd

2Bs-Hf -0.21 1.28 0.10 0.38
2Bs-Ta -0.71 1.06 -0.25 0.15
2Bs-W -0.94 0.81 -0.34 0.08
2Bg-Re 112 0.73 -0.64 0.2
2Bs-Os -0.83 -0.51

2Bg-Ir -1.53 0.65

2Bg-Pt -0.37 0.98

2Bs-Au -0.25 1.48

3Bs-Sc 111 2.22

3Bs-Ti 2.73 1.08 -2.46 0.37
3Bs-V -0.98 1.32 -0.83 0.44
3Bs-Cr -0.01 -0.49 -0.13 0.05
3Bs-Mn -0.69 -0.07 -1.09 0.59
3Bs-Fe -0.60 0.86 -0.98 1.76
3Bs-Co -0.86 1.01 -0.56 1.41
3Bs-Ni -0.67 1.27 -0.38 -0.45
3Bs-Cu -0.56 1.46 -0.64 1.83
3Bs-Zn -0.77 1.70

3Bs-Zr -0.42 -0.08 -0.11 -0.39
3Bs-Mo -0.10 0.07 0.34 -0.83
3Bs-Tc 0.20 -0.21 -0.11 0.21
3Bs-Ru -0.46 0.91 -0.55 1.02
3Bs-Rh -0.48 1.57 -0.24 1.37
3Bs-Pd -0.37 1.72 -0.01 1.63
3Bs-Ag -0.20 1.90

3Bs-Cd 0.68 3.52

3Bs-Hf -2.00 0.49
3Bs-Ta -1.08 1.08 0.31 -0.96
3Bs-W -0.42 0.72 0.23 -1.44
3Bs-Re -0.61 0.57 -0.01 -0.08
3Bs-Os -0.64 1.10 0.01 0.70
3Bs-Ir -0.58 1.22 -0.20 1.07




3Bs-Pt

-0.57

1.31

1.26

3Bs-Au

-0.25

1.64

Tab. S2 AGy+ for SAC candidates. Only those candidates whose energy injection of
N, adsorption and first hydrogenation meet criterions were considered.

Pristine MoS,

lBs@ MOSZ

2Bs@ MOSz

3Bs@ MOSQ

-0.78

2.12

-0.51

1.99

2.77

-0.38

3.98

2.16

0.65




Tab. S3 Vibrational frequencies of intermediate species and zero-point energy (Ezpg)
with entropy correction (-75) at standard condition. The 2Bs-Mn@MoS; is used as

representative data and calculations are listed.

Species Vibrational Frequencies Expp | -TS | Ezpp-TS
(em) @) | @) | (V)
*N-*N | 1925.60 | 477.47 | 30048 | 156.93 | 116.28 | 67.08 | 0.18 | -0.15 | 0.03
*N- | 3190.26 | 1646.85 | 1103.51 | 775.27 | 550.74 | 391.42 | 0.50 | -0.13 | 0.37
*NH 718408 | 133.37 | 106.39
*NH- | 3330.03 | 3276.67 | 1309.11 | 1264.51 | 1052.83 | 735.12 | 0.76 | -0.14 | 0.62
*NH 755067 | 409.59 | 299.89 | 121.65 | 82.04 | 53.89
*NH- | 3499.07 | 3393.55 | 3385.08 | 1595.10 | 1311.78 | 1110.79 | 1.15 | -0.16 | 0.99
*NH2 [1063.70 | 825.51 | 688.33 | 625.30 | 465.38 | 353.61
161.75 | 109.92 | 95.55
*NH,- | 3529.25 | 3490.24 | 341431 | 3409.93 | 1526.42 | 1513.00 | 1.42 | -0.16 | 1.26
*NH> [89223 | 784.97 | 72137 | 694.65 | 650.62 | 597.28
513.06 | 37043  336.63 218.81 | 169.78 | 121.45
*NH,- | 3509.22 | 3494.59 | 3450.22 | 3389.30 | 3322.11 | 1609.26 | 1.72 | -0.22 | 1.50
*NHs ['1506.46 | 1545.41 | 1184.63 | 79022 | 646.68 | 617.69
599.17 | 555.92 | 375.09 @ 326.66 | 292.75 | 186.20
15435 | 131.54 | 99.64
*NH; | 3478.17 | 3420.00  3254.69 1597.72 | 1577.51 | 1208.59 | 1.03 | -0.13  0.90
644.98 | 624.12 | 39430 | 194.43 | 160.09 | 92.06
#N-N | 2270.13 | 329.30 | 239.71 | 22729 | 40.96 | 32.76 | 0.19 | -0.20 | -0.01
*N-NH | 3200.68 | 1753.93  1081.76 = 517.03 | 455.70 | 350.48 | 0.48 | -0.15 | 0.33
282.80 | 83.93 | 68.64
*N- | 3492.98 | 3361.94 | 1585.55 | 1448.90 | 1182.63 | 540.53 | 0.81 | -0.11 | 0.70
NH> | 403.90 | 356.73 | 344.44 | 24121 | 113.97 | 23.99
*N | 1017.32 | 167.20 | 112.56 0.08 | -0.07  0.01
*NH | 3463.66 | 885.12 | 544.88 | 41833 | 157.65 | 15020 | 0.34 | -0.08  0.26
*NH, | 3538.52 | 3433.71 1454.59 633.69 | 54538 | 515.54 | 0.66 -0.11 0.5
299.05 | 144.54 | 135.73
*NH- | 3236.30 | 3154.77 | 1499.64 | 1401.39 | 1272.85 | 995.51 | 0.80 | -0.13 | 0.67
NH 151430 | 41344 22868  203.50 | 64.54 | 57.13
*NH- | 3554.17 | 3419.63 | 3367.95 | 1591.32 | 1436.63 | 1248.24 | 1.14 | -0.19 | 0.95
NH> 1116171 | 676.66 | 51530 | 50234 | 362.61 | 260.47




196.47 | 11496 @ 42.53
*NH,- | 3440.60 | 3406.93 | 3347.30 | 3268.95 1627.20 | 1572.27 | 1.48 | -0.27  1.21
NH2 17142049 | 1187.64 | 1099.94 | 1056.89 | 897.97 | 599.03
44749 | 256.87 | 163.54 | 14532 @ 39.46 13.84
H, 1027 -042 -0.15
N, 1016 -0.60  -0.44
NH; 1094 -0.60  0.34
Tab. S4 The AG,.x of all eligible catalysts and corresponding reaction process.
Catalysts AGmax (€V) Reaction process Pathway
Sc@MoS, 0.93 *NH-*NH, — enzymatic
*NH,-*NH,
Ti@MoS, 0.86 *NH-*NH, — enzymatic
*NH,-*NH,
V@MoS, 0.66 *NH-*NH, — enzymatic
*NH,-*NH,
Zr@MoS, 0.97 *NH-*NH, — enzymatic
*NH,-*NH,
Mo@MoS, 0.44 *N-N — *N-NH distal
Tc@MoS, 0.43 *N-N — *N-NH distal
Hf@MoS, 1.25 *NH-*NH, — enzymatic
*NH,-*NH,
Ta@MoS, 1.22 *NH-*NH, — enzymatic
*NH,-*NH,
W@MoS, 0.5 *NH, — *NH; enzymatic
Re@MoS, 0.4 *NH, — *NH; enzymatic
Os@MoS, 0.37 *N-N — *N-NH distal
1Bs-Ti@MoS, 0.37 *NH-*NH, — enzymatic
*NH,-*NH,
1Bs-V@MoS, 0.33 *NH-*NH, — enzymatic
*NH,-*NH,
1Bs-Zr@MoS, 0.64 *NH, — *NH; enzymatic
1Bs-Mo@MoS, 0.45 *N-N — *N-NH distal
1Bs-Tc@MoS, 0.45 *N-N — *N-NH distal
1Bs-Ru@MoS, 0.51 *N-*N — *N-*NH enzymatic
1Bs-Hf@MoS, 0.71 *NH-*NH, — enzymatic




*NH,-*NH,
1Bs-Ta@MoS, 1.34 *NH-*NH, — enzymatic
*NH,-*NH,
1Bs-W@MoS, 0.50 *N-N — *N-NH distal
1Bs-Re@MoS, 0.45 *N-N — *N-NH distal
1Bs-Os@MoS, 0.25 *N-N — *N-NH distal
2Bs-Sc@MoS, 1.28 *NH, — *NH; distal
2Bs-Ti@MoS, 0.82 *NH, — *NH; distal
2Bs-Cr@MoS, 0.44 *N-N — *N-NH distal
2Bs-Mn@MoS, 0.39 *N-N — *N-NH distal
2Bs-Tc@MoS, 0.43 *N-*N — *N-*NH enzymatic
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