Supporting Information

Effective Aperture Tuning of a Zeolitic-Imidazole Framework

CdIF-1 by Controlled Thermal Amorphization

Sunghwan Park^a and Hae-Kwon Jeong*ab

^{*a*} Artie McFerrin Department of Chemical Engineering and ^{*b*} Department of Materials Science and Engineering, Texas A&M University, 3122 TAMU, College Station, TX 77843-3122, United States

* Corresponding author:

H.-K. Jeong (E-mail address: hjeong7@tamu.edu, Phone: +1-979-862-4850, Fax: +1-979-845-6446)

Figure S1. (a) TGA thermogram of ZIF-8, ZIF-67, and CoZn-ZIF-8. (b) XRD patterns of ZIF-8, ZIF-67, and CoZn-ZIF-8 heat-treated at T_d (95 wt%) determined in (a).

Figure S2. (a) TGA thermogram of ZIF-8, CdIF-1, and CdZn-ZIF-8. (b) XRD patterns of ZIF-8, CdIF-1, and CdZn-ZIF-8 heat-treated at T_d (95 wt%) determined in (a).

Figure S3. XRD patterns of CdIF-1 heat-treated at 220 °C with different soaking times.

Figure S4. DSC curves of CdIF-1 with the final temperature of (a) 550 °C and (b) 420 °C.

Figure S5. Normalized (110) peak intensity of XRD patterns of CdIF-1 with (a) different heating temperatures and (b) different soaking times at 320 °C.

Figure S6. TGA thermogram of CdIF-1 with (a) different heating temperatures and (b) different soaking times at 320 °C.

Figure S7. Photograph of CdIF-1 and a_TCdIF-1 samples with different heating temperatures. All samples were immediately cooled naturally without soaking time.

Figure S8. Photograph of CdIF-1 and a_TCdIF-1 samples with different soaking time at 320 °C.

Figure S9. XRD patterns of CdIF-1 and a_T CdIF-1. The right figure is the rearranged image of the left figure. The reference peak was taken by aluminum syn. 00-004-0787 (JCPDS).

Figure S10. FT-IR spectra of CdIF-1 and a_T CdIF-1.

Figure S11. SEM images of (a) CdIF-1, (b) a_{0.3}CdIF-1, (c) a_{0.7}CdIF-1, and (d) a_{1.0}CdIF-1.

Figure S12. TEM images of (a) CdIF-1 and (b) a_{1.0}CdIF-1 at low magnifications.

Figure S13. HRTEM image of $a_{0.3}$ CdIF-1 and the corresponding FFT diffractions at different positions.

	CdIF-1	a _{0.3} CdIF-1	a _{0.7} CdIF-1	a _{1.0} CdIF-1
BET surface area / cm ² g ⁻¹	1412.7	~ 400	91.7	16.9
Pore volume / cm ³ g ⁻¹	0.66	~ 0.1	0.04	0.007

Table S1. BET surface area and pore volume determined by $N_{\rm 2}$ physisorption at 77 K

Figure S14. Adsorption isotherms of various gas molecules for CdIF-1 and a_TCIF-1 at 273 K.

Figure S15. Kinetic uptakes of various gas molecules for CdIF-1 and a_TCIF-1 at 273 K.

		273 K		298 K		323 K	
Sample	Gas	C _s /	b /	C _s /	b /	C _s /	b /
		mmol g ⁻¹	mmHg ⁻¹	mmol g ⁻¹	mmHg ⁻¹	mmol g ⁻¹	mmHg ⁻¹
CdIF-1	C ₃ H ₆	7.42	0.005	8.65	0.002	n/a	n/a
	C ₃ H ₈	6.06	0.009	6.14	0.004	n/a	n/a
	n-C ₄ H ₁₀	5.24	0.055	4.83	0.025	4.64	0.009
	i-C ₄ H ₁₀	4.79	0.061	4.58	0.019	4.52	0.007
	C ₃ H ₆	5.44	0.006	6.28	0.002	n/a	n/a
a. CdIF-1	C ₃ H ₈	4.56	0.009	4.70	0.003	n/a	n/a
	n-C ₄ H ₁₀	4.08	0.072	3.74	0.026	3.28	0.010
	i-C ₄ H ₁₀	3.64	0.045	3.57	0.019	3.28	0.006
	C ₃ H ₆	4.04	0.006	4.48	0.002	2.55	0.001
aCdIF-1	C ₃ H ₈	3.40	0.010	3.45	0.003	1.96	0.001
a _{0.7} Cull'-1	n-C ₄ H ₁₀	1.71	0.065	1.54	0.025	1.27	0.010
	i-C ₄ H ₁₀	0.76	0.043	1.00	0.013	0.35	0.004
a _{1.0} CdIF-1	C ₂ H ₄	0.71	0.004	0.56	0.002	0.55	0.001
	C ₂ H ₆	0.64	0.006	0.50	0.003	0.43	0.002
	C ₃ H ₆	0.76	0.021	0.60	0.009	0.51	0.004
	C ₃ H ₈	0.61	0.023	0.49	0.011	0.38	0.005
	n-C ₄ H ₁₀	0.60	0.045	0.47	0.026	0.33	0.007
	i-C ₄ H ₁₀	0.16	0.007	0.24	0.012	0.19	0.004

 Table S2. Langmuir fitting parameters

Unit: cm ² sec ⁻¹	CdIF-1	a _{0.3} CdIF-1	a _{0.7} CdIF-1	a _{1.0} CdIF-1
H ₂	2.19 x 10 ⁻⁹ ±	2.54 x 10 ⁻⁹ ±	1.21 x 10 ⁻⁹ ±	1.40 x 10 ⁻⁹ ±
	1.66 x 10 ⁻¹⁰	3.89 x 10 ⁻¹⁰	5.88 x 10 ⁻¹⁰	8.46 x 10 ⁻¹⁰
N ₂	$2.80 \ge 10^{-10} \pm$	$2.70 \text{ x } 10^{-10} \pm$	$1.53 \ge 10^{-10} \pm$	$2.74 \text{ x } 10^{-10} \pm$
	3.74 x 10 ⁻¹¹	4.09 x 10 ⁻¹¹	6.64 x 10 ⁻¹¹	1.33 x 10 ⁻¹¹
CH ₄	$5.98 \ge 10^{-10} \pm$	$5.61 \ge 10^{-10} \pm$	$3.42 \text{ x } 10^{-10} \pm$	$6.62 \ge 10^{-10} \pm$
	7.04 x 10 ⁻¹¹	1.51 x 10 ⁻¹¹	1.48 x 10 ⁻¹⁰	1.83 x 10 ⁻¹⁰
CO ₂	$7.93 \ge 10^{-10} \pm$	$7.37 \ge 10^{-10} \pm$	$4.61 \ge 10^{-10} \pm$	$8.31 \ge 10^{-10} \pm$
	2.38 x 10 ⁻¹¹	8.80 x 10 ⁻¹¹	1.99 x 10 ⁻¹⁰	1.48 x 10 ⁻¹⁰
C ₂ H ₄	$3.55 \ge 10^{-10} \pm$	$3.34 \ge 10^{-10} \pm$	$2.20 \text{ x } 10^{-10} \pm$	$2.50 \ge 10^{-10} \pm$
	3.61 x 10 ⁻¹¹	4.15 x 10 ⁻¹¹	4.57 x 10 ⁻¹¹	6.37 x 10 ⁻¹¹
C ₂ H ₆	$3.27 \ge 10^{-10} \pm$	$2.36 \ge 10^{-10} \pm$	1.54 x 10 ⁻¹⁰ ±	$1.58 \ge 10^{-10} \pm$
	7.31 x 10 ⁻¹¹	5.44 x 10 ⁻¹¹	5.15 x 10 ⁻¹¹	9.39 x 10 ⁻¹¹
C ₃ H ₆	$1.35 \ge 10^{-10} \pm$	$1.06 \ge 10^{-10} \pm$	$7.49 \ge 10^{-11} \pm$	$6.06 \ge 10^{-11} \pm$
	2.14 x 10 ⁻¹¹	4.59 x 10 ⁻¹²	2.49 x 10 ⁻¹¹	1.80 x 10 ⁻¹¹
C ₃ H ₈	$1.21 \ge 10^{-10} \pm$	$7.05 \text{ x } 10^{-11} \pm$	$2.42 \text{ x } 10^{-11} \pm$	$3.11 \ge 10^{-12} \pm$
	1.45 x 10 ⁻¹¹	1.74 x 10 ⁻¹¹	9.94 x 10 ⁻¹²	1.19 x 10 ⁻¹²
n-C ₄ H ₁₀	$8.09 \ge 10^{-11} \pm$	$5.55 \ge 10^{-11} \pm$	$1.11 \ge 10^{-11} \pm$	$1.17 \text{ x } 10^{-12} \pm$
	2.44 x 10 ⁻¹²	8.36 x 10 ⁻¹²	6.89 x 10 ⁻¹²	5.36 x 10 ⁻¹³
i-C ₄ H ₁₀	5.38 x 10 ⁻¹¹ ±	$6.55 \ge 10^{-12} \pm$	$2.74 \text{ x } 10^{-13} \pm$	$7.66 \ge 10^{-14} \pm$
	2.03 x 10 ⁻¹¹	1.24 x 10 ⁻¹²	9.94 x 10 ⁻¹⁴	1.71 x 10 ⁻¹⁴

Table S3. Corrected diffusivities (D_o) at 273K

Figure S16. Ideal n-C₄H₁₀/i-C₄H₁₀ adsorption selectivity of CdIF-1 and a_T CdIF-1.

Figure S17. Virial fitting of adsorption isotherms for CdIF-1.

Figure S18. Virial fitting of adsorption isotherms for a_{0.3}CdIF-1.

Figure S19. Virial fitting of adsorption isotherms for a_{0.7}CdIF-1.

Figure S20. Virial fitting of adsorption isotherms for a_{1.0}CdIF-1.

Figure S21. Arrhenius plots for the activation energy of diffusion $(^{E_a})$.

Unit: kJ mol ⁻¹	CdIF-1	a _{0.3} CdIF-1	a _{0.7} CdIF-1	a _{1.0} CdIF-1
C ₂ H ₄	21.5 ± 2.7	20.2 ± 0.5	24.4 ± 1.0	32.8 ± 0.3
C ₂ H ₆	19.6 ± 1.3	21.7 ± 0.7	24.1 ± 0.7	35.0 ± 0.1
C ₃ H ₆	27.0 ± 1.3	28.2 ± 1.2	31.6 ± 1.5	45.1 ± 0.2
C ₃ H ₈	26.6 ± 1.1	29.1 ± 1.2	33.1 ± 1.4	41.8 ± 0.3
n-C ₄ H ₁₀	36.7 ± 2.2	40.8 ± 2.6	43.1 ± 2.5	46.1 ± 0.7
i-C ₄ H ₁₀	33.1 ± 1.8	28.6 ± 0.9	14.2 ± 6.1	46.8 ± 2.0

Table S4. Isosteric enthalpy of adsorption $({}^{\Delta H}{}^{o}_{ads})$

Unit: kJ mol ⁻¹	CdIF-1	a _{0.3} CdIF-1	a _{0.7} CdIF-1	a _{1.0} CdIF-1
C ₂ H ₄	7.10 ± 2.38	7.68 ± 1.31	14.78 ± 1.22	15.70 ± 1.98
C ₂ H ₆	6.12 ± 1.45	8.94 ± 0.56	15.75 ± 0.82	19.85 ± 0.81
C ₃ H ₆	8.29 ± 2.11	10.82 ± 0.87	12.97 ± 3.67	17.63 ± 2.89
C ₃ H ₈	8.49 ± 0.49	12.20 ± 3.27	20.10 ± 8.12	54.49 ± 9.12
n-C ₄ H ₁₀	10.08 ± 1.63	15.04 ± 0.55	22.81 ± 14.41	29.02 ± 9.04
i-C ₄ H ₁₀	12.54 ± 4.93	17.87 ± 4.70	24.12 ± 5.55	33.20 ± 0.56

Table S5. Activation energy of diffusion $(^{E_a})$