1 Supporting Information

2	Thiol-Functionalized Metal-organic Framework
3	Embedded with Chelator-modified Magnetite for the
4	High-Efficiency and Recyclable Mercury Removal in
5	Aqueous Solution
6	Yuliang Li, Mengxi Tan, Guangxia Liu, Dunfeng Si, Ning Chen*, Dongmei Zhou*
7	State Key Laboratory of Pollution Control and Resource Reuse, School of the
8	Environment, Nanjing University, Nanjing 210023, P. R. China.
9	
10	
11	* Corresponding author
11	corresponding dution.
12	Email address: chenning@nju.edu.cn (N. Chen);
13	dmzhou@nju.edu.cn (D. Zhou)
14	
15	
16	Number of Pages: 19
17	Number of Texts: 3
18	Number of Figures: 11
19	Number of Tables: 4
20	
21	Text S1. Materials
22	All chemical agents were used as received without further purification

23 ^{1, 2}. Benzene-1,3,5-tricarboxylic acid (H₃BTC, 98.0%), Cu(NO₃)₂·3H₂O(\geq 99%, 24 AR), dithioglycol (80%, AR), 4-(5)-imidazoledithiocarboxylic acid (DTIM, 25 70%, CP), (3-glycidyloxypropyl)-trimethoxysilane (GLP, 97%), Fe₃O₄ 26 nanoparticles (Fe₃O₄-NPs 98%), Hg(NO₃)₂ (AR) were obtained from Aladdin 27 Reagent Co., Ltd., Shanghai, China. Toluene (\geq 99.5%, AR), thiourea (\geq 99%, 28 AR), methanol (\geq 99.9%, GC), ethanol (75%, AR), HNO₃ (CMOS), NaOH (\geq 29 96.0%, AR), HCl (GR) were purchased from the Sinopharm Group 30 Chemical Reagent Co., Ltd., China. All solutions were prepared using ultrapure 31 water (18.2 M·cm⁻¹) from a Synergy UV ultrapure water system with Millipak-40 filter 32 unit (Millipore Corporation Merck KGaA, Darmstadt, Ge). 33

34 Text S2. Characterization.

35 The morphology and detailed microstructure of MOFs and its derivatives were 36 examined by scanning electron microscopy (SEM, Quanta 250 FEG-SEM) and 37 transmission electron microscopy (TEM, JEM-2100f) images equipped with energydispersive spectroscopy (EDS). Powder X-ray diffraction (XRD, Bruker-D8 ADVANCE) 38 patterns were recorded on a powder diffractometer with the Cu $K\alpha$ (λ = 1.5418 Å). The 39 40 spectra were scanned in the range of $10^{\circ} < 2\vartheta < 70^{\circ}$ with a 0.018° step width and at 3° min⁻¹. The X-ray photoelectron spectroscopy (XPS) measurements were carried out on 41 42 an ESCALAB 250Xi spectrometer (Thermo Scientific, USA) equipped with a pass energy 43 of 30 eV with a power of 100 W (10 kV and 10 mA) and a mono-chromatized Al K α X-44 ray (hv = 1486.65 eV) source. All samples were analyzed under the pressure less than 45 1.0×10⁻⁹ Pa with a step of 0.05 eV. Spectra were acquired through the Avantage 46 software (Version 5.979). Fourier transform infrared (FTIR) spectra were recorded on 47 a Thermo Fisher Nicolet iS5 spectrometer. Magnetic properties of Fe₃O₄@DTIM-48 MOF@SH was measured by a vibrating sample magnetometer (VSM) (PPMS-9T 49 Quantum Design, American) at room temperature in a magnetic field strength of 1 50 Tesla. The zeta potential of Fe₃O₄@DTIM-MOF@SH was recorded by Nanoscale and 51 zeta potential analyzer (Nano ZS90). The specific surface area, pore volume and pore 52 size distribution of Fe_3O_4 @DTIM-MOF@SH samples were examined by multipoint N_2 adsorption and desorption isotherms (up to $P/P_0= 1$ and 77 K) by an automatic surface 54 area and porosity analyzer (ASAP 2460, Micromeritics, America) under high vacuum in 55 a clean system with a diaphragm pumping system.

56 **Text S3. DFT calculation**

57 Firstly, we use the program of GaussView to construct the cluster model (Figure 58 S7). Then, we use Multifunctional wavefunction analyzer (Multiwfn) to generate the 59 input file of the ORCA program for restrictive optimization with the hybrid functional 60 PBE0 ³. In order to examine the convergence trend of the optimization process, the 61 OfakeG tool was used to convert the output file into a pseudo Gaussian output file, 62 which was further processed with GaussView.

- 64 **Table S1.** Secific surface area/pore volume for the HKUST-1and Fe₃O₄@DTIM-
- 65 MOF@SH Composites.

Sample	S _{BET} ^a (m ² g ⁻¹)	V _{pore} ^b (cm g ⁻¹)
HKUST-1	1350	0.7013
Fe ₃ O ₄ @DTIM-MOF@SH	827	0.4058

 $66~~^{a}\,S_{BET}$ represents BET surface areas obtained from N_2 adsorption isotherms.

 $67~~^{\rm b}\,V_{\rm pore}$ represents pore volumes obtained from N_2 adsorption isotherms.

68

- 70~ Table S2. Experimental values and parameters of pseudo-second-order adsorption
- 71 kinetics models.

		Pseudo-second-order-kinetic				
	Sample	<i>K</i> ₁ (mg g ⁻ ¹ min ⁻¹)	R ²	S	Fitted $Q_{\rm e}$ (mg g ⁻¹)	K _d
	Fe ₃ O ₄ @DTIM- MOF@SH	0.29	0.99	0.00 9	10.31	6.2 × 10⁵
72						

Sample		Langmuir isotherm				Freundlich isotherm		
	R_1^2	KL	Fitted Q _e (mg g ⁻¹⁾	Q _e (mg g ⁻¹)	R_2^2	K _F	1/n	
Fe ₃ O ₄ @DTIM	0.005	0 0 2 2	072 A	756.0	0.96	28.	0.65	
-MOF@SH	0.995	0.025	873.4	750.9	8	06	3	

74	Table S3. Isotherm model	parameters for Hg ²⁺	⁺ adsorption of Fe ₃	O ₄ @DTIM-MOF@SH
----	--------------------------	---------------------------------	--	-----------------------------

$Q_{\rm e}$ (mg g ⁻¹)	K_d (mL g ⁻¹)	Reference
714.29	4.73 × 10 ⁵	1
102.8	3.16 × 10 ³	4
63	—	5
22.45	—	6
264	_	7
439.8	1.86 × 10 ⁶	8
278	—	9
198.2	9.99 × 10⁵	10
380	6.45×10^{5}	11
51.27	_	12
210	_	13
756.9	6.2 × 10 ⁵	This work
	Q _e (mg g ⁻¹) 714.29 102.8 63 22.45 264 439.8 278 198.2 380 51.27 210 756.9	$Q_e (mg g^{-1})$ $K_d (mL g^{-1})$ 714.29 4.73×10^5 102.8 3.16×10^3 63-22.45-264-439.8 1.86×10^6 278-198.2 9.99×10^5 380 6.45×10^5 51.27-210-756.9 6.2×10^5

Table S4. Comparison of various adsorbents for Hg²⁺ removal.

82 Figure S1. Schematic of preparation process of the Fe $_3O_4@DTIM-MOF@SH$ composite.

Figure S3. a) XRD partterns of as-synthesized MOF-Fe₃O₄@DTIM, Fe₃O₄@GLP, Fe₃O₄@DTIM and diffractograms of the Fe₃O₄; b) XRD partterns of MOF@SH-Fe₃O₄, MOF@SH, MOF and MOF-Fe₃O₄; c) FT-IR spectra of Fe₃O₄@DTIM-MOF and Fe₃O₄@DTIM-MOF@SH composite before adsorption.

- 94 Figure S4. VSM analysis of $Fe_3O_4@DTIM-MOF@SH$ and (b) magnetic separation of
- 95 Fe₃O₄@DTIM-MOF@SH composite.

Figure S5. HKUST-1 (green) and Fe_3O_4 @DTIM-MOF@SH (red) composites' N₂ 99 adsorption isotherms at 77 K respectively; the inset shows the pore size distribution 100 of each sample.

Figure S6. HKUST-1 (green) ; $Fe_3O_4@DTIM-MOF@SH$ (red) and $Fe_3O_4@DTIM-$ 104 MOF@SH upon immersion in water for 3 days (blue) composites' N_2 adsorption 105 isotherms at 77 K respectively

111 Figure S7. a) Effect of pH on the removal rate of Hg²⁺; b) zeta potential of
112 Fe₃O₄@DTIM-MOF@SH.
113

116 Figure S8. XPS Hg4f and S2p spectra of Fe₃O₄@DTIM-MOF@SH before and after

 $\,$ adsorption. Area filled with blue refers to S-C, orange refers to -SO_X and pink refers to

118~ Hg-S and those binding energy are marked besides the peaks.

- 121 Figure S9. The cluster model of Fe₃O₄@DTIM-MOF@SH and Hg²⁺. Atom filled with grey
- 122 refers to C, green refers to Hg, red refers to O, yellow refers to S and pink refer to Cu.

125 Figure S10. Energy convergence curve of the cluster model (Figure 11) after structural

126 optimization.

127

Figure S11. The electrostatic potential (ESP) population on the surface of 130 Fe₃O₄@DTIM-MOF@SH.

132 References

- F. Ke, L. G. Qiu, Y. P. Yuan, F. M. Peng, X. Jiang, A. J. Xie, Y. H. Shen and J. F. Zhu, *J Hazard Mater*,
 2011, **196**, 36-43.
- 135 2. A. Tadjarodi and A. Abbaszadeh, *Microchimica Acta*, 2016, **183**, 1391-1399.
- 136 3. T. Lu and F. Chen, *J Comput Chem*, 2012, **33**, 580-592.
- J. He, K.-K. Yee, Z. Xu, M. Zeller, A. D. Hunter, S. S.-Y. Chui and C.-M. Che, *Chemistry of Materials*,
 2011, 23, 2940-2947.
- 139 5. Y. Y. Xiong, J. Q. Li, X. F. Feng, L. N. Meng, L. Zhang, P. P. Meng, M. B. Luo and F. Luo, *Journal of* 140 *Solid State Chemistry*, 2017, **246**, 16-22.
- 141 6. Z. Wang and S. M. Cohen, *Chemical Society Reviews*, 2009, **38**, 1315-1329.
- 142 7. L. Huang, M. He, B. Chen and B. Hu, *Journal of Materials Chemistry A*, 2015, **3**, 11587-11595.
- 1438.L. Liang, Q. Chen, F. Jiang, D. Yuan, J. Qian, G. Lv, H. Xue, L. Liu, H.-L. Jiang and M. Hong, Journal144of Materials Chemistry A, 2016, 4, 15370-15374.
- 145
 9.
 F. Luo, J. L. Chen, L. L. Dang, W. N. Zhou, H. L. Lin, J. Q. Li, S. J. Liu and M. B. Luo, Journal of

 146
 Materials Chemistry A, 2015, **3**, 9616-9620.
- 14710.K.-K. Yee, N. Reimer, J. Liu, S.-Y. Cheng, S.-M. Yiu, J. Weber, N. Stock and Z. Xu, Journal of the148American Chemical Society, 2013, 135, 7795-7798.
- 14911.N. D. Rudd, H. Wang, E. M. Fuentes-Fernandez, S. J. Teat, F. Chen, G. Hall, Y. J. Chabal and J. Li,150ACS applied materials & interfaces, 2016, 8, 30294-30303.
- 151 12. X. Luo, T. Shen, L. Ding, W. Zhong, J. Luo and S. Luo, *Journal of Hazardous Materials*, 2016, **306**, 313-322.
- 153 13. M. R. Sohrabi, *Microchimica Acta*, 2013, **181**, 435-444.