Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Boosting energy storage performance of BiFeO₃-based multilayer capacitors via enhancing ionic bonding and relaxor behavior

Li-Feng Zhu^{1,4}, Aizhen Song¹, Bo-Ping Zhang^{*1}, Xiao-Qi Gao¹, Zhi-Hang Shan¹, Gao-Lei Zhao^{*3}, Junqi

Yuan¹, Deng Deng¹, Hailong Shu¹, Jing-Feng Li^{*2}

¹School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing

100083, China.

²State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering,

Tsinghua University, Beijing, 100084, China

³Institute of Acoustics, Chinese Academy of Sciences, No.21 North 4th Ring Road, Haidian District,

100190, Beijing, China

⁴ Foshan (Southern China) Institute for New Materials, Foshan, Guangdong, 528200, China.

Corresponding author: <u>bpzhang@ustb.edu.cn</u> (B.P. Zhang), <u>zhaogaolei@mail.ioa.ac.cn</u> (G.L. Zhao) and <u>jingfeng@mail.tsinghua.edu.cn</u> (J.F. Li)

Fig.S1 UV–Vis diffuse reflectance spectra for 0.7BF-0.3BT and BF-BT-0.12NT capacitors (a), the indirect band gap calculated by plots of $(\alpha h\nu)^{1/2}$ versus hv (b), and direct band gap calculated by plots of $(\alpha h\nu)^2$ versus hv (c) for the for 0.7BF-0.3BT and BF-BT-0.12NT capacitors, relative dielectric constant (ε_r) measured at 1 kHz (d) and total energy storage (W_{total})

(e) for BF-BT-xNT capacitors

Fig.S2 Unipolar P-E loops for BF-BT-xNT capacitors x = 0.05 (a), x = 0.08 (b), x = 0.12 (c) and x = 0.15 (d)

Figure S3 SEM images of the MLCCs for BF-BT-xNT capacitors x = 0.05 (a), x = 0.08 (b), x = 0.12 (c) and x = 0.15 (d)

Fig.S4 temperature dependence of the dielectric constant ε_r and dielectric loss tand for the capacitors at x=0.08 (a) and 0.15 (b), plots of ln $(1/\varepsilon_r-1/\varepsilon_m)$ versus ln $(T-T_m)$ at 1 kHz for the corresponding ceramics, x =

0.08 (c) and 0.15 (d)