Supporting Information

Photostable Reaction-Based A-A-A Type Two-Photon Fluorescent Probe for Rapidly Detecting and Imaging Sulfur Dioxide

Qiang Zhang, Xiaoxiao Hu, Xiaomei Dai, Junyong Sun, and Feng Gao*

Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of

Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and

Materials Science, Anhui Normal University, Wuhu 241002, P. R. China

*Corresponding author. Phone/Fax: +86-553-3937137. E-mail: fgao@mail.ahnu.edu.cn.

Experimental Procedures

1. Instrumental and reagents.

All Reagents were purchased from commercial sources and used without further purification. The zebrafish were acquired from Shanghai FishBio Co., Ltd.

¹H NMR and ¹³C NMR spectra were recorded on a BRUKER ASCEndtm400 MHz instrument. HRMS (high resolution mass spectrometry) spectra were obtained with an Agilent 6200 instrument. Fluorescence and UV absorption spectra were obtained with a PerkinElmer LS-55 fluorescence spectrophotometer and Hitachi U-3900 spectrophotometer, respectively. The absolute fluorescence quantum yields were obtained with an FLS1000 fluorescence spectrophotometer (Edinburgh Instruments Ltd., United Kingdom).The two-photon fluorescence emission spectrums and images were carried out on a confocal laser scanning microscope(TCS SP8, Leica, Germany) equipped with a Ti:Sapphire laser (Chameleon Ultra II, Coherent).

2. Measurement of two-photon absorption cross-sections.

Two-photon absorption cross-sections (TPA, σ) were calculated using the two-photon excited fluorescence method.¹ The two-photon fluorescence emission spectrums at different excitation were collected from confocal laser scanning microscopy with a multiphoton femtosecond laser and all other parameters remain the same during the data collection. The two-photon absorption cross-sections of the samples in PBS buffer (10 mM, pH 7.4) were calculated using fluorescein in pH = 11 aqueous solution as a reference according to eqn.:²

$$\sigma_{\rm S} = \sigma_{\rm R} \times ({\rm S}_{\rm S}/{\rm S}_{\rm R}) \times (\Box_{\rm R}/\Box_{\rm S}) \times ({\rm C}_{\rm R}/{\rm C}_{\rm S})$$

In the equation, the subscripts S and R stand for the sample and reference molecules. C is the concentration, Φ is the quantum yield, S is two-photon excited fluorescence emission integration at different laser wavelengths, and σ_R is the two-photon cross-section of the reference molecule.

3. Zebrafish culture

Zebrafish Culture: 4-day-old larval zebrafishes were used for bio-imaging in vivo. The zebrafish embryos were incubated in E3 embryo media (15 mM NaCl, 0.5 mM KCl, 1 mM MgSO₄, 1 mM

 $CaCl_2$, 0.15 mM KH₂PO₄, 0.05 mM Na₂HPO₄, 0.7 mM NaHCO₃, 10⁻⁵% methylene blue, pH 7.5) at 28 °C for four days. Then the 4-day-old larval zebrafishes were used for subsequent imaging experiments.

Probes	OPM/ TPM	Detection limit	Response time	TP stability/ σ	References
y C y y y y y y y y y y y y y y y y y y	TPM	1.86 µM	4.5 min	-/ 3.9 GM	<i>J. Mater. Chem. B</i> , 2016, 4 , 7888-7894
	OPM	530 nM	6 min	-	<i>Talanta</i> , 2018, 189 , 429–436.
apoolog.	TPM	50 nM	3 min	-/ 100 GM	<i>Chem. Commun.</i> , 2016, 52 , 10289-10292
	TPM	200 nM	5 min	-	Sensors and Actuators B, 2018, 255, 1228–1237
NC CN	OPM	270 pM	90 s	-	<i>Chem. Commun.</i> , 2014, 50 , 183-185.
	TPM	7.12 μM	10 s	-	Analyst, 2019, 144 , 4371–4379.
C C C C C C C C C C C C C C C C C C C	TPM	560 nM	5 min	-/ 77 GM	<i>Sensors and</i> <i>Actuators B</i> , 2016, 233 , 1–6.
	TPM	190 nM	30 s	Photostable/ 91 GM	This work

Table S1. Comparison of some fluorescent probes for selective detection SO₂ derivatives.

"-" indicates that there is not provided or not investigated in the manuscript.

Figure S1. Two-photon fluorescence emission spectrum of FITC in pH 11 aqueous solution at a two-photon laser excitation of 780 nm.

Figure S2. Photostability experiment of BTC (black line) and BTC-HSO₃ (BTC reacted with 200 μ M HSO₃⁻, red line) in 10 mM, pH 7.4 PBS buffer containing 5% DMSO. Voltage of xenon lamp: 700V, slit: 15 × 15, BTC:10 μ M.

Figure S3. The plot of the variation of fluorescence intensity $(F-F_0/F_0)$ of 10µM BTC in the presence of 200µM HSO₃⁻ against different pH values in phosphate buffer. *F* and *F*₀ are the fluorescence intensity of BTC in the presence and absence of HSO₃⁻, respectively.

Figure S4. Time-dependent fluorescence intensity at 520 nm of 10 μ M BTC probe in the presence of 200 μ M HSO₃⁻ in 10 mM, pH 7.4 phosphate buffer containing 5% DMSO.

Figure S5. ¹H-NMR comparison of the probe BTC with the product BTC-HSO₃ upon addition of HSO_3^- in DMSO-*d*6 and D_2O (*V*/*V*=7:3).

Figure S6. HR-MS of the reaction mixture of BTC and HSO₃⁻.

Figure S7. The viability of HeLa cells treated by BTC probe with various concentrations for 24 h.

Figure S8. ¹H NMR of Product 1.

Figure S9. ¹C NMR of Product 1.

Figure S11. ¹CNMR of BTC.

Supplementary References

- (1) N. S. Makarov, M. Drobizhev, A. Rebane, Opt. Express, 2008, 16, 4029-4047.
- (2) C. Xu, W. W. Webb, J. Opt. Soc. Am. B, 1996, 13, 481-491.