Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

Supplementary information for:

Mitochondria-targeted Carbon Monoxide Delivery Combined with Singlet Oxygen Production from a Single Nanoplatform under 808 nm Light Irradiation for Synergistic Anticancer Therapy

Qi Tang,[†] Hai-Lin Zhang,[†] Yi Wang,[†] Jing Liu, [†] Shi-Ping Yang,[§] and Jin-Gang Liu^{*,†}

[†]Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China, E-mail: liujingang@ecust.edu.cn

[§]Key Lab of Resource Chemistry of MOE & Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China

Scheme S1 Preparation procedures of nanoplatform (1).

Element	Wt %	At %
C K	28.61	50.82
NK	00.18	00.27
O K	19.63	26.17
F K	02.20	02.48
BrL	03.03	00.81
P K	00.85	00.59
RuL	06.63	01.40
ClK	02.27	01.36
TiK	33.17	14.77
MnK	03.43	01.33

Fig. S1 EDS spectrum of nanoplatform (1).

Fig. S2 ¹H NMR spectrum of [(tpy^{COOH})Ru(pdo)(Cl)](PF₆) in DMSO-d6.

Fig. S3 ESI Mass spectrum of [(tpy^{COOH})Ru(pdo)(Cl)](PF₆).

Fig. S4 ¹H NMR spectrum of [(tpy^{COOH})Ru(tpphz)(Cl)](PF₆) in DMSO-*d*6.

Fig. S5 ESI Mass spectra of [(tpy^{COOH})Ru(tpphz)(Cl)](PF₆) (A) and Mn-CO (B).

Fig. S6 FTIR spectrum of Mn-CO.

Fig. S7 ESI Mass spectrum (A), FTIR spectrum (B) and ¹H NMR spectrum (C) of the CO probe (FL-CO-1).

Fig. S8 FTIR spectrum of nanoplatform (1) before and after adding 100 μ M H₂O₂.

Fig. S9 Absorbance spectrum changes of DPBF treated with nanoplatform (1) (A) and C-TiO₂ (B) after 808 nm laser (1.0 W/cm²) irradiation for different times. (C) Absorbance spectrum changes of DPBF treated with 808 nm laser (1.0 W/cm²) only.

Fig. S10 Intracellular fluorescence image of CO by probe system (probe + PdCl₂, 1 μ M each). Top row A-E: bright field image. Bottom row: fluorescence images of A-E, respectively. (A, A1) The HeLa cells were incubated with probe for 30 min. (B, B1) The HeLa cells were incubated with PdCl₂ for 30 min. (C and C1, D and D1, E and E1) The HeLa cells were preincubated with 50, 100 and 200 μ M of nanoplatform (1) for 4 h and then incubated with probe and PdCl₂ for 30 min, respectively. Scale bars: 25 μ m.

Fig. S11 Intracellular fluorescence image of ${}^{1}O_{2}$ by DCFH-DA. Top row: bright field image. Bottom row: fluorescence images. Scale bars: 250 μ m.

Fig. S12 Plausible mechanism for ${}^{1}O_{2}$ production by nanoplatform (1).