Surface chemistry regulates optical properties and cellular interactions of ultrasmall MoS₂ quantum dots for biomedical applications

Kangqiang Liang^a, Shaohua Qu^a, Yixiao Li^a, Li-li Tan^a, Li Shang^{ab*}

^a State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China

^b NPU-QMUL Joint Research Institute of Advanced Materials and Structures (JRI-AMAS), Northwestern Polytechnical University, Xi'an, China

*Corresponding authors, e-mail: li.shang@nwpu.edu.cn

Experimental

The Cell Lysates

The preparation of cell lysates was based on previous reports.¹ HeLa cells were lysed with a cold 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS) lysis buffer (10 mM Tris-HCl, pH 7.4, 1 mM MgCl₂, 1 mM EGTA, 0.1 mM PMSF, 0.5% CHAPS, and 10% glycerol) supplemented with 20 μ M cetrimonium bromide at a density of 1 × 10⁶ cells/mL. The cell suspension was incubated for 30 min on ice, followed by centrifugation at 4 °C for 20 min to remove cell debris. The supernatant was flash frozen and stored at -20 °C before use.

Supporting Figures

Fig. S1 TEM (a-d) and corresponding size distribution diagrams (e-h) of GSH-MoS₂ QDs (a, e); Cys-MoS₂ QDs (b, f); MSA-MoS₂ QDs (c, g) and TA-MoS₂ QDs (d, h), respectively. Scale bars: 20 nm.

Fig. S2 The ¹H-NMR spectrum of pristine MoS_2 QDs.

Fig. S3 The Tauc-Plots of MoS₂ QDs and modified MoS₂ QDs. (a) Pristine MoS₂ QDs with band gap of 4.45 eV; (b) GSH-MoS₂ QDs with band gap of 4.23 eV; (c) Cys-MoS₂ QDs with band gap of 4.35 eV; (d) MSA-MoS₂ QDs with band gap of 4.32 eV; (e) TA-MoS₂ QDs with band gap of 4.38 eV. The band gap is estimated from the plot of $(\alpha hv)^2$ versus hv by extrapolating the straight line to the X axis intercept (where α is the absorbance and E=hv is the photonenergy).²⁻⁴

Fig. S4 The fluorescence emission spectra of (a) GSH-MoS₂ QDs; (b) Cys-MoS₂ QDs; (c) MSA-MoS₂ QDs and (d) TA-MoS₂ QDs upon excitation at different wavelengths from 350 nm to 490 nm.

Fig. S5 The quantum yield of pristine MoS_2 QDs and different modified MoS_2 QDs by using quinine sulfate as the reference.

Fig. S6 The colloidal stability of different MoS_2 QDs in (a) PBS and (b) cell lysates. The timedependent fluorescence intensity of QDs, normalized by the original intensity at time zero, was recorded upon excitation at 405 nm.

Reference

- J. Deng, K. Wang, M. Wang, P. Yu, and L. Mao, J. Am. Chem. Soc., 2017, 139, 5877-5882.
- 2. X. Ren, Q. Wei, P. Ren, Y. Wang and Y. Peng, Opt. Mater., 2018, 86, 62-65.
- Y. Feng, S. Lin, S. Huang, S. Shrestha and G. Conibeer, J. Appl. Phys., 2015, 117, 125701.
- L. Najafi, B. Taheri, B. Martin-Garcia, S. Bellani, D. Di Girolamo, A. Agresti, R. Oropesa-Nunez, S. Pescetelli, L. Vesce, E. Calabro, M. Prato, A. E. Del Rio Castillo, A. Di Carlo and F. Bonaccorso, *ACS Nano*, 2018, **12**, 10736-10754.