Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

Supporting information

In situ synthesis of fluorescent polydopamine polymer dots based on Fenton reaction for multi-sensing platform

Quan Li^a, Taoyi Zhang^b, Jing Chen^b, Wenxi Ji^b, Yun Wei^a*

^a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd North East Road, Chaoyang District, Beijing 100029, China.

^b Sinopec Beijing Research Institute of Chemical Industry, 14 North Third Ring Road East, Chaoyang District, Beijing 100014, China.

*Corresponding authors. Yun Wei, E-mail: weiyun@mail.buct.edu.cn

Fig. S1 Absorption spectra of (a) OPD solution, (b) OPD-Fe²⁺ solution, (c) OPD- H_2O_2 solution, (d) OPD-Fe²⁺- H_2O_2 solution (insert: the corresponding photograph under natural light). The concentrations of Fe²⁺, OPD, and H_2O_2 are 100 μ M, 200 μ M, and 2 mM, respectively, and pH 4.0.

Fig. S2 The fluorescence response of the obtained PDA-PDs with TBA, where F_0 and F are fluorescence intensity of the PDA-PDs in the absence and presence of TBA, respectively.

Fig. S3 (A) MALDI-TOF mass spectrometry of the as-synthesized PDA-PDs. (B) Possible chemical structures of the fragments of PDA-PDs.

Fig. S4 (A) XPS spectra of the PDA-PDs. High resolution (B) C1s, (C) N1s, and (D) O1s peaks of the PDA-PDs.

Fig. S5 The zeta potential of the PDA-PDs.

Fig. S6 The fluorescence intensity of the PDA-PDs under 365 nm excitation for 60 min.

Fig. S7 The relationship of the integrated fluorescence intensity with absorbance at 380 nm for quinoline sulfate and fluorescent PDA-PDs.

Fig. S8 Effects of (A) DA concentration, (B) H_2O_2 concentration, (C) pH, and (D) incubation time on the detection of Fe^{2+} .

Fig. S9 The fluorescence spectra of the TA-H₂O₂ system catalyzed by Fe²⁺ and Fe³⁺. TA concentration: 1 mM; H₂O₂ concentration: 2 mM; Fe²⁺ concentration: 50 μ M; Fe³⁺ concentration: 50 μ M; pH: 4.0; Reaction time: 30 min.

Fig. S10 Effects of (A) Fe^{2+} concentration, (B) H_2O_2 concentration, and (C) incubation time on the detection of DA at pH 4.0.

Fig. S11 The fluorescence intensities of $Fe^{2+}-H_2O_2$ system by adding different substrates with similar molecular structure to DA.

Fig. S12 Effects of (A) Fe^{2+} concentration, (B) DA concentration, and (C) incubation time on the detection of H_2O_2 at pH 4.0.

Fig. S13 Effects of (A) GOx concentration, (B) incubation time on the detection of glucose at 37°C.

Methods	Sensing Probe	LOD (µM)	Reference
Electrochemistry	SMS-1 modified SPE	0.54	1
Colorimetry	Chelate-type Schiff base	0.19	2
Colorimetry	Agar-stabilized AgNPs	0.54	3
Colorimetry	Triazole-Azo dye	0.11	4
Fluorometry	Carbon dots	0.051	5
Fluorometry	MPA-CdZnTe QDs	0.2	6
Fluorometry	PDA-PDs	0.09	This work

 Table S1 Comparison of different analytical methods for Fe²⁺ sensing.

 Table S2 Comparison of different analytical methods for DA sensing.

Methods Sensing Probe		LOD (µM)	Reference
Electrochemistry	3D pGO-GNP-ITO	6	7
Electrochemistry	Pt-Au nanoparticles	0.075	8
Colorimetry	CoFe ₂ O4/CoS	0.58	9
Colorimetry	Pt/CoFe ₂ O ₄	0.42	10
Fluorometry	F-CuInS ₂	0.2	11
Fluorometry	GQDs	0.09	12
Fluorometry	PDA-PDs	0.07	This work

Table S3 Comparison of different analytical methods for glucose sensing.

Methods	Sensing Probe	LOD (µM)	Reference
Chromatography	3-OMG	0.39	13
Colorimetry	Fe-doped CeO ₂ NRs	3.41	14
Colorimetry	H ₂ TCPP-Co(OH) ₂ -GO	9.5	15
Fluorometry	C-dots/AgNPs	1.39	16
Fluorometry	Nanoceria	8.9	17
Fluorometry	MnO ₂ -UCNPs	3.7	18
Fluorometry	PDA-PDs	1.61	This work

Samples	Added (µM)	Measured (µM)	Recovery (%)	RSD (%)
1	0.00	ND	/	/
	2.00	1.85	92.5	3.79
	4.00	4.13	103.3	2.86
2	0.00	ND	/	/
	2.00	2.12	106.0	3.67
	4.00	3.73	93.3	4.63

Table S4 Determination of Fe^{2+} in serum samples (n = 3).

The final serum samples were diluted 100-fold for detection.

Samples	Added (µM)	Measured (µM)	Recovery (%)	RSD (%)
1	0.00	ND	/	/
	5.00	5.59	111.8	4.00
	10.00	11.60	116.0	2.71
2	0.00	ND	/	/
	5.00	5.24	104.8	3.08
	10.00	9.51	95.1	4.63

Table S5 Determination of dopamine in serum samples (n = 3).

The final serum samples were diluted 100-fold for detection.

	0	1	()	
Samples	Added (µM)	Measured (µM)	Recovery (%)	RSD (%)
1	0.00	48.52	/	/
	10.00	58.99	100.8	4.36
	20.00	67.02	97.8	2.43
2	0.00	44.68	/	/
	10.00	53.2	97.3	3.14
	20.00	68.73	106.3	2.57

Table S6 Determination of glucose in serum samples (n = 3).

The final serum samples were diluted 100-fold for detection.

References

[1] S. Rana, S. K. Mittal, N. Kaur, and C. E. Banks. Sensor. Actuat B: Chem., 2017, 249, 467-477.

[2] G. R. You, G. J. Park, S. A. Lee, K. Y. Ryu, C. Kim. Sensor. Actual B: Chem., 2015, 215, 188-195. [3] S. Basiri, A. Mehdinia, A. Jabbari. Colloids Surf. A., 2018, 545, 138-146.

[4] G. Singh, P. Satija, A. Singh, Diksha, Pawan, Suman, Sushma, Mohit, and S. Soni.Mater. Chem. Phys., 2020, 249, 123005.

[5] S. Wei, L. Tan, X. Yin, R. Wang, X. Shan, Q. Chen, T. Li, X. Zhang, C. Jiang, and G. Sun. Analyst 2020, **145**, 2357-2366.

[6] J. Qian, X. Lu, C. Wang, H. Cui, K. An, L. Long, N. Hao, and K. Wang. Sensor. Actuat B: Chem., 2020, **322**, 128636.

[7] S. S. Choo, E. S. Kang, I. Song, D. Lee, J. W. Choi, and T. H. Kim. *Sensors* 2017, 17, 861.

[8] X. Hui, X. Xuan, J. Kim, and J. Y. Park. *Electrochim Acta* 2019, 328, 135066.

[9] Z. Yang, Y. Zhu, M. Chi, C. Wang, Y. Wei, and X. Lu. J. Colloid Interf Sci., 2018, 511, 383-391.

[10] F. He, W. Li, F. Zhao, X. Zhu, Q. Liu, Z. Liu, X. Zhang, and X. Zhang. *Microchem. J.*, 2020, **158**, 105264.

[11] M. Yu, Y. Lu, Z. Tan. Talanta 2017, 168, 16-22.

[12] J. Zhao, L. Zhao, C. Lan, and S. Zhao. Sensor. Actual B: Chem., 2016, 223, 246-251.

[13] Z. Ling, P. Xu, Z. Zhong, F. Wang, N. Shu, J. Zhang, X. Tang, L. Liu, and X. Liu. *Biomed. Chromatogr.*, 2016, **30**, 601-605.

[14] D. Jampaiah, T. Srinivasa Reddy, A. E. Kandjani, P. R. Selvakannan, Y. M. Sabri, V. E. Coyle, R. Shukla, and S. K. Bhargava. *J. Mater. Chem. B.*, 2016, 4, 3874-3885.

[15] X. Zhao, K. Wu, H. Lyu, X. Zhang, Z. Liu, G. Fan, X. Zhang, X. Zhu, and Q. Liu. *Analyst* 2019, **144**, 5284-5291.

[16] J. L. Ma, B. C. Yin, X. Wu, and B. C. Ye. Anal. Chem., 2017, 89, 1323-1328.

[17] B. Liu, Z. Sun, P. J. Huang, and J. Liu. J. Am. Chem. Soc., 2015, 137, 1290-1295.

[18] J. Yuan, Y. Cen, X. J. Kong, S. Wu, C. L. Liu, R. Q. Yu, X. Chu. ACS Appl. Mater. Interfaces, 2015, 7, 10548-10555.