Supplementary Information

Singlet-oxygen generated by metal-organic framework for

electrochemical biosensing

Pinghua Ling,* Shan Cheng, Nuo Chen and Feng Gao*

Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.

* Corresponding author. Phone/fax: +86-553-3937137. E-mail: phling@ahnu.edu.cn
(P. Ling); fgao@ahnu.edu (F. Gao)

Supporting Figures

The elemental mappings of Zn-ZnMOF

Fig. S1. Elemental mappings of C, N, O and Zn in Zn-ZnMOF.

The EDX spectrum of Zn-ZnMOF

Fig. S2. EDX spectrum of Zn-ZnMOF.

The FT-IR of TCPP(Zn) and Zn-ZnMOF

Fig. S3. FT-IR analysis of TCPP(Zn) and Zn-ZnMOF.

The XPS of Zn 2p and O 1s in Zn-ZnMOF

Fig. S4. (A) Zn 2p and O 1s peaks from the XPS spectra of Zn-ZnMOF.

Fig. S5. N₂ adsorption isotherm of Zn-ZnMOF.

<u>The ABDA absorption spectra as a function of time in the presence of</u> <u>TCPP(Zn)</u>

Fig. S6. (A) ABDA absorption spectra as a function of irradiation time of TCPP(Zn) in 0.1 M PBS (pH = 7.4). (B) Photo of tubes with different reaction system: TMB + 420 nm illumination (a), TCPP(Zn) + 420 nm illumination (b), TMB-TCPP(Zn) (c), and TMB-TCPP(Zn) + 420 nm illumination (d).

<u>The Cyclic voltammograms of bare ITO electrode and Zn-</u> <u>ZnMOF/ITO electrode</u>

Fig. S7. Cyclic voltammograms of bare TIO electrode (a) and Zn-ZnMOF/ITO electrode (b) in 5 mM K_3 [Fe(CN)₆]/ K_4 [Fe(CN)₆] in 0.1 M PBS (pH 7.4) containing 0.1 M KCl at scan rate of 50 mV s⁻¹.

Fig. S8. EIS of Zn-ZnMOF/ITO electrode (inset: bare TIO electrode) in 5 mM K₃[Fe(CN)₆]/K₄[Fe(CN)₆] in 0.1 M PBS (pH 7.4) containing 0.1 M KCl.

The effect of potential for potoelectrochemical bosensor

Fig. S9. Effects of potential on current response in the presence of 40 μ M HQ in 0.1 M pH 7.4 PBS with 420 light illumination.

The Performance of Photoelectrochemical Biosensor

Fig. S10. Amperometry measurements at Zn-ZnMOF/ITO electrode in pure buffer and in the presence of 40 μ M amoxicillin, 40 μ M ampicillin, 40 μ M benzylpenicillin and 40 μ M 6-aminopenicillanic acid at -0.4 V in 0.1 M pH 7.4 PBS with 420 nm light illumination.

Fig. S11. The structure of 2-aminophenol, 3-aminophenol, 4-aminophenol, 2nitrophenol, 3-nitrophenol, 4-nitrophenol, and bisphenol A and amperometry measurements at Zn-ZnMOF/ITO electrode in pure buffer and in the presence of 40 μ M 3-nitrophenol, 40 μ M 2-nitrophenol, 40 μ M 4-nitrophenol, 40 μ M 2-aminophenol, 40 μ M 3-aminophenol, 40 μ M 4-aminophenol and 40 μ M bisphenol A at -0.4 V in 0.1 M pH 7.4 PBS with 420 light irradiation.

Fig. S12. Calibration curve of current intensity vs different concentration of 2-Aminophenol at -0.4 V in 0.1 M pH 7.4 PBS with 420 nm light irradiation.

Fig. S13. Calibration curve of current intensity vs different concentration of 2-Nitrophenol at -0.4 V in 0.1 M pH 7.4 PBS with 420 nm light irradiation.

Fig. S14. Calibration curve of current intensity vs different concentration of 3-Aminophenol at -0.4 V in 0.1 M pH 7.4 PBS with 420 nm light irradiation.

Fig. S15. Calibration curve of current intensity vs different concentration of 3-Nitrophenol at -0.4 V in 0.1 M pH 7.4 PBS with 420 nm light irradiation.

Fig. S16. Calibration curve of current intensity vs different concentration of 4-Aminophenol at -0.4 V in 0.1 M pH 7.4 PBS with 420 nm light irradiation.

Fig. S17. Calibration curve of current intensity vs different concentration of 4-Nitrophenol at -0.4 V in 0.1 M pH 7.4 PBS with 420 nm light irradiation.

Fig. S18. Calibration curve of current intensity vs different concentration of Bisphenol A at -0.4 V in 0.1 M pH 7.4 PBS with 420 nm light irradiation.

Table	S1.	Comparison	of th	e detection	limit	of	hydroquinone	(HQ)	between	the
proposed method and other reported detection methods.										

Electrode	Technique	Detection limit (µM)	Refs
Graphene-PANI/Tyr/ Nafion/GCE	LSV	200	1
GCE	CV	1.75	2
graphitized mesoporous carbon/GCE	DPV	0.91	3
LDH/GCE	DPV	2.6	4
СРЕ	SWV	2	5
Poly/GCE	LSV	3.91	6
Zn-ZnMOF/ITO	amperometry	0.8	This work

Reference

- 1. K. Chen, Z.L. Zhang, Y.M. Liang and W. Liu, Sensors, 2013, 13, 6204-6216.
- L.Y. Jiang, I. Santiago and J. Foord, *Commun. Chem.*, 2018, DOI: 10.1038/s42004-018-0045-8.
- 3. R. Thangaraj, N. Manjula, and A.S. Kumar, Anal. Methods, 2012, 4, 2922–2928.

- 4. M. Kahl and T. D. Golden, Electroanalysis, 2014, 26, 1664-1670.
- S.C. Fernandes, I.R.W.Z. Oliveira and I.C. Vieira, Enzyme Microb. Technol., 2007, 40, 661-668.
- 6. D.P. Santos, M.F. Bergamini, A.G. Fogg and M.V.B. Zanoni, Microchim. Acta, 2005, 151, 127-134.