Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

## **Supporting Information**

## Tunable, conductive, self-healing, adhesive and injectable hydrogel for bioelectronics and tissue regeneration applications

Vineeta Panwar<sup>1</sup>, Anand Babu<sup>2</sup>, Anjana Sharma<sup>1</sup>, Jijo Thomas<sup>1</sup>, Vianni Chopra<sup>1</sup>, Pinki Malik <sup>2</sup>, Swati Rajput<sup>3</sup>, Monika Mittal<sup>3</sup>, Rajdeep Guha<sup>4</sup>, Naibedya Chattopadhyay<sup>3</sup>, Dipankar Mandal<sup>2</sup> and Deepa Ghosh<sup>1</sup>\*

<sup>1</sup>Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Mohali-140306, Punjab, India.

<sup>2</sup>Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Sector-81, Mohali-140306, Punjab, India.

<sup>3</sup>Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, U.P., India.

<sup>4</sup>Laboratory Animal Facility, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, U.P., India.

\*Correspondence: Dr. Deepa Ghosh (deepa.ghosh@inst.ac.in, Tel.: 0172-221075)

## Table of Contents

| Figure S1. Scheme for the synthesis of carboxymethyl chitosan                    | 3 |
|----------------------------------------------------------------------------------|---|
| Figure S2. FTIR Spectra of chitosan and carboxymethyl chitosan                   | 3 |
| Figure S3. FTIR Spectra of CMC, CMC-D and CMC-D-PDA                              | 4 |
| Figure S4. FTIR Spectra of CMC-D-PDA, CMCh and Ch-CMC-PDA                        | 4 |
| Figure S5. Scheme for the synthesis of Ch-CMC-PDA                                | 5 |
| Figure S6. The recovery of hydrogel after high shear load                        | 6 |
| Figure S7. I-V curves of hydrogels swollen in PBS and deionized H <sub>2</sub> O | 6 |
| Figure S8. Schematic representation for conductivity                             | 7 |
| Figure S9. Scheme of device fabrication for TENG                                 | 7 |
| Figure S10. Cytocompatibility studies                                            | 8 |
| Figure S11. MTT Assay                                                            | 8 |
| Table S1. Conductivity Comparison with the reported hydrogels                    | 9 |
| References                                                                       | 9 |

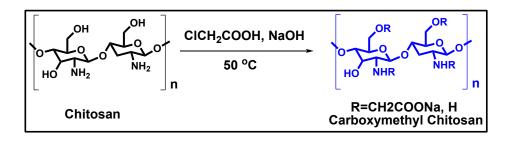



Figure S1. Scheme for the synthesis of carboxymethyl chitosan.

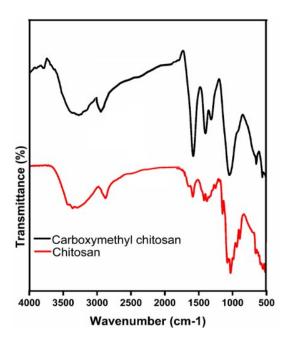



Figure S2. FTIR Spectra of chitosan and carboxymethyl chitosan

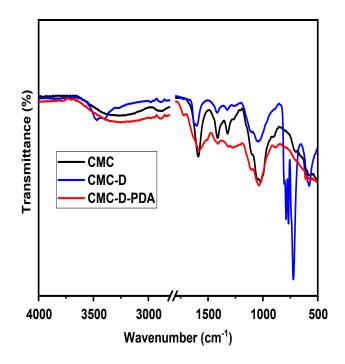



Figure S3. FTIR Spectra of CMC, CMC-D and CMC-D-PDA

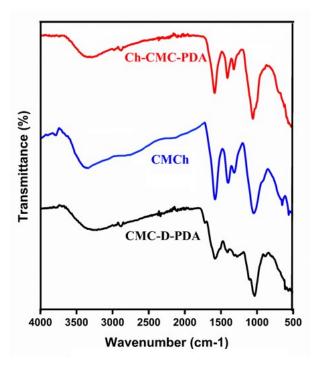



Figure S4. FTIR Spectra of CMC-D-PDA, CMCh and Ch-CMC-PDA

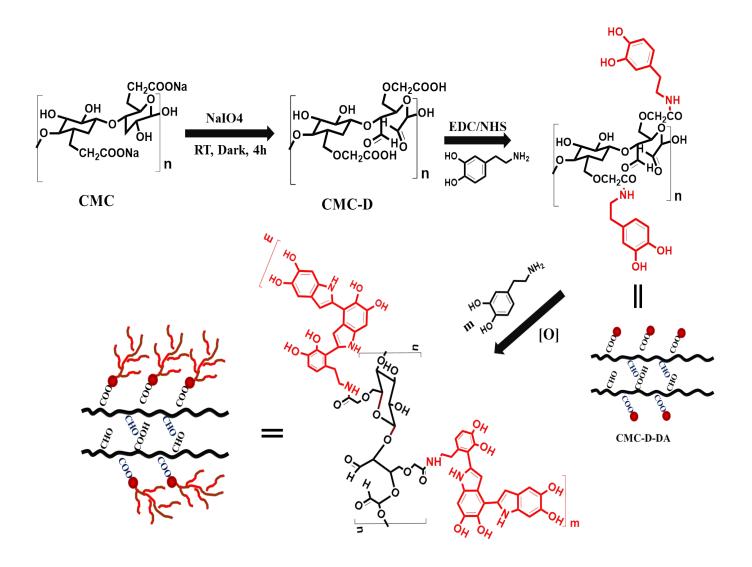
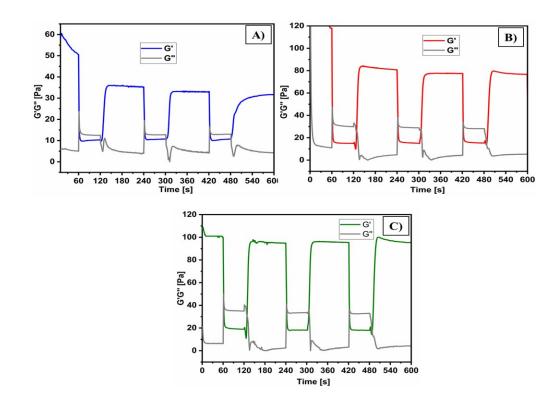




Figure S5. Scheme for the synthesis of Ch-CMC-PDA



**Figure S6**. The recovery of hydrogel after high shear load demonstrated by the continuous step strain. A) Ch-CMC-PDA<sub>1</sub>, B) Ch-CMC-PDA<sub>2</sub>, C) Ch-CMC-PDA<sub>3</sub>

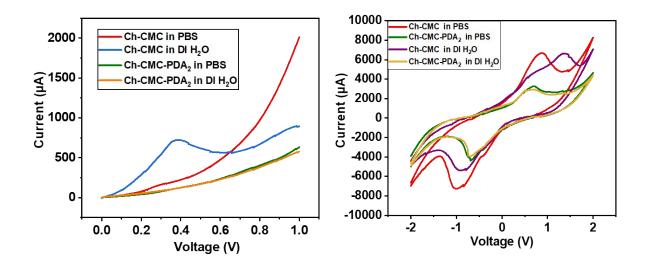



Figure S7. Current-Voltage characteristics of Ch-CMC and Ch-CMC-PDA<sub>2</sub> hydrogel swollen in PBS and deionized H<sub>2</sub>O

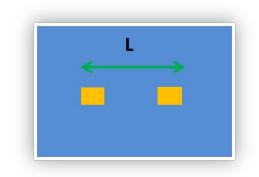



Figure S8. Schematic representation for electrical measurement

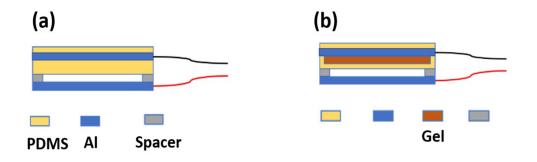
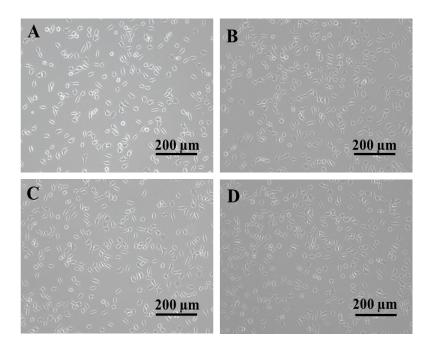
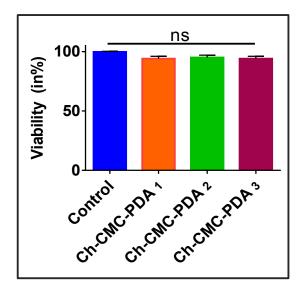





Figure S9. Scheme of device fabrication for TENG (a) Control and (b) Ch-CMC-PDA<sub>x</sub>



**Figure S10**. Cytocompatibility studies. Bright field images of L929 cells treated with contact media and incubated for 72 h. (A) Untreated control, (B) Ch-CMC-PDA<sub>1</sub>, (C) Ch-CMC-PDA<sub>2</sub> (D) Ch-CMC-PDA<sub>3</sub> respectively.



**Figure S11**. Cell viability on exposure of L929 cells with hydrogel-contact media using MTT assay. Data represents mean  $\pm$  SD from 3 experiments carried out in triplicate. ns indicates no significant change (One-way ANOVA, Tukey's multiple comparison test).

| S. No. | Material                                         | Application                                           | Conductivity                       | Ref.            |
|--------|--------------------------------------------------|-------------------------------------------------------|------------------------------------|-----------------|
| 1.     | PEDOT:<br>PSS/peptide-PEG<br>hydrogels           | Tissue engineering                                    | 8-16×10 <sup>-3</sup><br>S/cm      | [1]             |
| 2.     | GOxSPNB<br>Hydrogels.                            | Adhesive                                              | 1.05×10 <sup>-2</sup> S/cm         | [2]             |
| 3.     | PNIPAM/L/CNT                                     | Human monitoring<br>motion                            | 1.3-1.9×10 <sup>-3</sup><br>S/cm   | [3]             |
| 4.     | PDA-pGO-PAM<br>hydrogel                          | Cell stimulators and<br>implantable<br>bioelectronics | 2–10×10 <sup>-2</sup><br>S/cm      | [4]             |
| 5.     | Chitosan/graphene<br>oxide composite<br>hydrogel | Tissue engineering                                    | 0.57-1.22×10 <sup>-3</sup><br>S/cm | [5]             |
| 6.     | Poly (NIPAM-co-<br>β-CD) hydrogel                | Sensors, human<br>motion sensing                      | 3.5×10-2 S/cm                      | [6]             |
| 7.     | CS-AT Hydrogel                                   | Cell Delivery Carrier<br>for Cardiac Cell<br>Therapy  | 2.2-2.4×10 <sup>-3</sup><br>S/cm   | [7]             |
| 8.     | QCSP/PEGS-FA<br>hydrogel                         | Wound dressing and<br>cutaneous wound<br>healing      | 2.25–3.5×10 <sup>-3</sup><br>S/cm  | [8]             |
| 9.     | Ch-CMC-PDAx<br>hydrogel                          | Multi-functional<br>hydrogel                          | 0.01-3.4×<br>10 <sup>-3</sup> S/cm | Our<br>Hydrogel |

**Table S1**. Conductivity comparison with the reported hydrogels

## References

- 1. [1] Z. Deng, H. Wang, P.X. Ma and B. Guo, Nanoscale, 2020, 12, 1224-1246.
- 2. [2] Z. Deng, T. Hu, Q. Lei, J. He, P.X. Ma and B. Guo, ACS applied materials & *interfaces*, 2019, **11**, 6796-6808.
- 3. [3] Y. Wang, F. Huang, X. Chen, X.-W. Wang, W.-B. Zhang, J. Peng, J. Li and M. Zhai, *Chemistry of Materials*, 2018, **30**, 4289-4297.
- 4. [4] L. Han, X. Lu, M. Wang, D. Gan, W. Deng, K. Wang, L. Fang, K. Liu, C.W. Chan and Y. Tang, *Small*, 2017, **13**, 1601916.
- 5. [5] X. Jing, H.-Y. Mi, B.N. Napiwocki, X.-F. Peng and L.-S. Turng, *Carbon*, 2017, **125**, 557-570.
- 6. [6] Z. Deng, Y. Guo, X. Zhao, P.X. Ma and B. Guo, *Chemistry of Materials*, 2018, **30**, 1729-1742.
- [7] R. Dong, X. Zhao, B. Guo and P.X. Ma, ACS applied materials & interfaces, 2016, 8, 17138-17150.
- 8. [8] X. Zhao, H. Wu, B. Guo, R. Dong, Y. Qiu and P.X. Ma, *Biomaterials*, 2017, **122**, 34-47.