Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information for

Organotin Schiff bases as Halofluorochromic dyes: Green synthesis, chemio-photophysical characterization, DFT, and their fluorescent bioimaging *in vitro*

Margarita López-Espejel,^a Alberto Gómez-Treviño,^a Blanca M. Muñoz-Flores,^a Manuel A. Treto-Suarez,^{b,c} Eduardo Schott,^{b,c} Dayán Páez-Hernández,^{d,e} Ximena Zarate,^{f,*} and Víctor M. Jiménez-Pérez.^{a,*}

Table of contents

Page

Table S1	Reaction time and yields by two synthetic routes of 1-8 .					
Table S2	Crystal data for compound 1	6				
Table S3	Emission data of compounds 1-8 at different pH values.	7				
Table S4	Structural parameters obtained through X-ray diffraction structure (1 _c) and theoretically calculated (1 A^{0}_{Theo}) to compound 1. Where α and γ are bond angles in °, and <i>d</i> is the bond lengths in Å.	41				
Table S5	Torsion angle $\gamma(C_7-N_1-C_8-C_9)$ and bond lengths $d(Sn-O_2)$ (in Å).	43				
Table S6	Singlet \rightarrow Singlet absorption data in compounds 1 and 2 in the neutral (A ⁰), basic (B ⁻), and acid (C ⁺ and D ⁺) media considering the solvent effect (Aqueous Solutions, $\mathcal{E}=58.5$, and refraction=1.33).	43				
Table S7	Singlet \rightarrow Singlet emission data in compounds 1 and 2 in the neutral (A ⁰), basic (B ⁻), and acid (C ⁺ and D ⁺) media considering the solvent effect (Aqueous Solutions, ε =58.5, and refraction=1.33).	44				
Table S8	Morokuma-Ziegler EDA for all systems in the neutral (A^0), basic (B^-), and acid (C^+ and D^+) media. All values are in kcal mol ⁻¹	44				
Table S9	Contours of the NOCV deformation density (ρ) and the contribution of the interaction to the total orbital interaction (k) are presented in kcal mol ⁻¹ for all systems in the neutral (A^0), basic (B^-) and acid (C^+ and D^+)	46				

media.

Figure S1	¹³ C NMR Spectrum of compound 7 and 6 with zoom on an aliphatic and aromatic zone, respectively					
Figure S2	Intermolecular interaction of compound 1	7				
Figure S3	Torsion angle of compound 1.	7				
Figure S4	Mass spectrum of compound 1	8				
Figure S5	¹ H NMR (DMSO- d_6) spectrum of compound 1 .	8				
Figure S6	¹³ C NMR (DMSO- d_6) spectrum of compound 1 .	9				
Figure S7	¹³ C NMR extension spectrum corresponding aliphatic region of compound 1 .	9				
Figure S8	¹¹⁹ Sn NMR (DMSO- d_6) spectrum of compound 1.	10				
Figure S9	COSY correlation (δ_H/δ_H) spectrum corresponding aromatic region of compound 1 .	10				
Figure S10	COSY correlation (δ_H/δ_H) spectrum corresponding aliphatic region of compound 1.	11				
Figure S11	HSQC correlation (δ H/ δ C) spectrum corresponding aromatic region of compound 1 .	11				
Figure S12	HSQC correlation (δ H/ δ C) spectrum corresponding aliphatic region of compound 1 .	12				
Figure S13	Mass spectrum of compound 2.	12				
Figure S14	¹ H NMR (CDCl ₃) spectrum of compound 2 .	13				
Figure S15	¹ H NMR for H- o spectrum of compound 2 .	13				
Figure S16	¹³ C NMR (CDCl ₃) spectrum of compound 2 .	14				
Figure S17	¹¹⁹ Sn NMR (CDCl ₃) spectrum of compound 2 .	14				
Figure S18	COSY correlation (δ_H/δ_H) spectrum corresponding of compound 2 .	15				
Figure S19	HSQC correlation (δ H/ δ C) spectrum corresponding of compound 2 .	15				
Figure S20	Mass spectrum of compound 3 .	16				

Figure S21	¹ H NMR (CDCl ₃) spectrum of compound 3 .	16
Figure S22	¹³ C NMR (CDCl ₃) spectrum of compound 3 .	17
Figure S23	¹³ C NMR (CDCl ₃) expansion spectrum of compound 3 .	17
Figure S24	Coupling constant $J(^{13}C, ^{119/117}Sn)$ of compound 3 .	18
Figure S25	¹¹⁹ Sn NMR (CDCl ₃) spectrum of compound 3 .	18
Figure S26	COSY correlation (δ_H/δ_H) spectrum corresponding aromatic region of compound 3.	19
Figure S27	COSY correlation (δ_H/δ_H) spectrum aliphatic region of compound 3 .	19
Figure S28	HSQC correlation ($\delta H/\delta C$) spectrum corresponding aromatic region of compound 3 .	20
Figure S29	HSQC correlation ($\delta H/\delta C$) spectrum corresponding aliphatic region of compound 3 .	20
Figure S30	Mass spectrum of compound 4.	21
Figure S31	¹ H NMR (DMSO- d_6) spectrum of compound 4 .	21
Figure S32	¹³ C NMR (DMSO- d_6) spectrum of compound 4 .	22
Figure S33	¹³ C NMR expansion spectrum of compound 4 .	22
Figure S34	¹¹⁹ Sn NMR (DMSO- d_6) spectrum of compound 4 .	23
Figure S35	COSY correlation (δ_H/δ_H) spectrum corresponding of compound 4.	23
Figure S36	HSQC correlation (δ H/ δ C) spectrum corresponding of compound 4.	24
Figure S37	¹ H NMR ((CD_3) ₂ CO) spectrum of compound 5 .	24
Figure S38	¹³ C NMR ((CD ₃) ₂ CO) spectrum of compound 5 .	25
Figure S39	¹³ C NMR expansion spectrum of compound 5 .	25
Figure S40	Coupling constant $J(^{13}C, ^{119/117}Sn)$ of compound 5 .	26
Figure S41	¹¹⁹ Sn NMR ((CD ₃) ₂ CO) spectrum of compound 5 .	26
Figure S42	COSY correlation (δ_H/δ_H) spectrum corresponding aromatic region of compound 5 .	27

Figure S43	COSY correlation (δ_H / δ_H) spectrum corresponding aliphatic region of 5 .	27
Figure S44	HSQC correlation ($\delta H/\delta C$) spectrum corresponding aromatic region of compound 5 .	28
Figure S45	HSQC correlation ($\delta H/\delta C$) spectrum corresponding aliphatic region of compound 5 .	28
Figure S46	Mass spectrum of compound 6.	29
Figure S47	¹ H NMR (CDCl ₃) spectrum of compound 6 .	29
Figure S48	¹³ C NMR (CDCl ₃) spectrum of compound 6 .	30
Figure S49	Coupling constant $J(^{13}C, ^{119/117}Sn)$ of compound 6 .	30
Figure S50	¹¹⁹ Sn NMR (CDCl ₃) spectrum of compound 6 .	31
Figure S51	COSY correlation (δ_H/δ_H) spectrum corresponding of compound 6 .	31
Figure S52	Mass spectrum of compound 7.	32
Figure S53	¹ H NMR (CDCl ₃) spectrum of compound 7.	32
Figure S54	¹³ C NMR (CDCl ₃) spectrum of compound 7 .	33
Figure S55	¹³ C NMR expansion spectrum of compound 7.	33
Figure S56	Coupling constant $J(^{13}C, ^{119/117}Sn)$ of compound 7.	34
Figure S57	¹¹⁹ Sn NMR (CDCl ₃) spectrum of compound 7.	34
Figure S58	COSY correlation (δ_H/δ_H) spectrum corresponding aromatic region of compound 7.	35
Figure S59	COSY correlation (δ_H/δ_H) spectrum corresponding aliphatic region of compound 7.	35
Figure S60	HSQC correlation ($\delta H/\delta C$) spectrum corresponding aromatic region of compound 7.	36
Figure S61	HSQC correlation (δ H/ δ C) spectrum corresponding aliphatic region of compound 7.	36
Figure S62	Mass spectrum of compound 8.	37
Figure S63	¹ H NMR (CDCl ₃) spectrum of compound 8 .	37

Figure S64	¹ H NMR H- o spectrum of compound 8 .	38
Figure S65	13 C NMR (CDCl ₃) spectrum of compound 8 .	38
Figure S66	Coupling constant $J(^{13}C, ^{119/117}Sn)$ of compound 8	39
Figure S67	¹¹⁹ Sn NMR (CDCl ₃) spectrum of compound 8 .	39
Figure S68	Emission spectra of halochromism for compound 1, 2, 3, and 4.	40
Figure S69	Emission spectra of halochromism for compounds 6, 7 and 8.	40
Figure. S70	Optimized structures of 1 and 2 in the ground (S_0) and the first-singlet excited (S_1) state: neutral (A^0) , basic (B^-) and acid $(C^+$ and $D^+)$ media.	42

Comp.	Conventional heating		Micro	owave irradiation	Reaction time
	Time	(h) Yield (%)	Time	(min) Yield (%)	improve
1	24	78	3	83	480
2	24	63	6	86	240
3	24	60	3	97	480
4	24	59	6	89	240
5	24	72	3	91	480
6	24	63	6	88	240
7	24	57	3	90	480
8	24	62	6	87	240

Table S1. Reaction time and yields by two synthetic routes of 1-8.

Figure S1. ¹³C NMR Spectrum of compound 7 (left) and 6 (right) with zoom on an aliphatic and aromatic zone, respectively.

Table S2. Crystal data for compound 1

Empirical formula	$\overline{C_{21}H_{26}N_2O_5}Sn$
Formula weight	505.13
Temperature, K	293(2)
Wavelength	0.71073
Crystal system	Monoclinic
Space group	P2(1)/c
<i>a</i> , Å	9.67160 (10)
b, Å	16.2257 (3)
<i>c</i> , Å	14.4268 (15)
α	90.00 °
β	100.982(2)°
γ	90.00°
V, Å ³	2132.42 (5)
Z	4
$\rho_{calc,mg.cm}$ -3	1.573
μ, mm ⁻¹	1.232
2θ range for data collection	$2.924 - 27.466^{\circ}$
Index ranges	$-18 \le h \le 18$,
No. of reflns collected	43394
No. of indep reflns	3977
[R _{int}]	0.0311
Goodness of fit	1.054
<i>R</i> 1, w <i>R</i> 2 (Ι>2σ(Ι))	0.0317/0.0765
R1, wR2 (all data)	0.0429/0.0843

 Table S3. Emission data of compounds 1-8 at different pH values.

Comp.	pH 5	pH 6	pH 7	pH 8	Effect below
					pH 7
1	519	517	538	524	Hypochromic
2	525	541	517	542	Hypochromic
3	513	515	530	529	Hypochromic
4	491	490	492	492	Hyperchromic
6	550	554	560	571	Hyperchromic
7	519	517	538	528	Hypochromic
8	524	553	525	541	Hypochromic

Figure S2. Intermolecular interaction of compound 1

Torsion angle C7-N1-C8-C9: 30.61°

Figure S3. Torsion angle of compound 1.

Figure S4. Mass spectrum of compound 1

Figure S5. ¹H NMR (DMSO- d_6) spectrum of compound 1.

Figure S6. ¹³C NMR (DMSO- d_6) spectrum of compound 1.

Figure S7. ¹³C NMR extension spectrum corresponding aliphatic region of compound 1.

Figure S8. ¹¹⁹Sn NMR (DMSO- d_6) spectrum of compound 1.

Figure S9. COSY correlation (δ_H / δ_H) spectrum corresponding aromatic region of compound 1.

Figure S10. COSY correlation (δ_H/δ_H) spectrum corresponding aliphatic region of compound 1.

Figure S11. HSQC correlation ($\delta H/\delta C$) spectrum corresponding aromatic region of compound 1.

Figure S12. HSQC correlation ($\delta H/\delta C$) spectrum corresponding aliphatic region of compound 1.

Figure S13. Mass spectrum of compound 2.

Figure S14. ¹H NMR (CDCl₃) spectrum of compound 2.

Figure S15. ¹H NMR for H-*o* spectrum of compound 2.

Figure S16 13 C NMR (CDCl₃) spectrum of compound 2.

Figure S17. ¹¹⁹Sn NMR (CDCl₃) spectrum of compound 2.

Figure S18. COSY correlation (δ_H / δ_H) spectrum corresponding of compound **2**.

Figure S19. HSQC correlation ($\delta H/\delta C$) spectrum corresponding of compound 2.

Figure S20. Mass spectrum of compound 3.

Figure S21. ¹H NMR (CDCl₃) spectrum of compound 3.

Figure S23. ¹³C NMR (CDCl₃) expansion spectrum of compound 3.

Figure S25. ¹¹⁹Sn NMR (CDCl₃) spectrum of compound **3**.

Figure S26. COSY correlation (δ_H/δ_H) spectrum corresponding aromatic region of compound 3.

Figure S27. COSY correlation (δ_H / δ_H) spectrum aliphatic region of compound 3.

Figure S28. HSQC correlation (δ H/ δ C) spectrum corresponding aromatic region of compound 3.

Figure S29. HSQC correlation (δ H/ δ C) spectrum corresponding aliphatic region of compound 3.

Figure S30. Mass spectrum of compound 4.

Figure S31. ¹H NMR (DMSO-*d*₆) spectrum of compound 4.

Figure S32. ¹³C NMR (DMSO- d_6) spectrum of compound 4.

Figure S33. ¹³C NMR expansion spectrum of compound 4.

Figure S34. ¹¹⁹Sn NMR (DMSO- d_6) spectrum of compound 4.

Figure S35. COSY correlation (δ_H/δ_H) spectrum corresponding of compound 4.

Figure S36. HSQC correlation ($\delta H/\delta C$) spectrum corresponding of compound 4.

Figure S37. ¹H NMR ((CD₃)₂CO) spectrum of compound 5.

Figure S39. ¹³C NMR expansion spectrum of compound 5.

Figure S40. Coupling constant $J(^{13}C, ^{119/117}Sn)$ of compound 5.

Figure S41. ¹¹⁹Sn NMR ((CD₃)₂CO) spectrum of compound 5.

Figure S42. COSY correlation (δ_H/δ_H) spectrum corresponding aromatic region of compound 5.

Figure S43. COSY correlation (δ_H/δ_H) spectrum corresponding aliphatic region of 5.

Figure S44. HSQC correlation (δ H/ δ C) spectrum corresponding aromatic region of compound **5**.

Figure S45. HSQC correlation (δ H/ δ C) spectrum corresponding aliphatic region of compound 5.

Figure S46. Mass spectrum of compound 6.

Figure S47. ¹H NMR (CDCl₃) spectrum of compound 6.

Figure S49. Coupling constant $J({}^{13}C, {}^{119/117}Sn)$ of compound 6.

Figure S50. ¹¹⁹Sn NMR (CDCl₃) spectrum of compound 6.

Figure S51. COSY correlation (δ_H/δ_H) spectrum corresponding of compound 6.

Figure S53. ¹H NMR (CDCl₃) spectrum of compound 7.

Figure S54. ¹³C NMR (CDCl₃) spectrum of compound 7.

Figure S55. ¹³C NMR expansion spectrum of compound 7.

Figure S56. Coupling constant *J*(¹³C, ^{119/117}Sn) of compound **7**.

Figure S57. ¹¹⁹Sn NMR (CDCl₃) spectrum of compound 7.

Figure S58. COSY correlation (δ_H/δ_H) spectrum corresponding aromatic region of compound 7.

Figure S59. COSY correlation (δ_H/δ_H) spectrum corresponding aliphatic region of compound 7.

Figure S60. HSQC correlation ($\delta H/\delta C$) spectrum corresponding aromatic region of compound 7.

Figure S61. HSQC correlation (δ H/ δ C) spectrum corresponding aliphatic region of compound 7.

Figure S62. Mass spectrum of compound 8.

Figure S63. ¹H NMR (CDCl₃) spectrum of compound 8.

Figure S65. ¹³C NMR (CDCl₃) spectrum of compound 8.

Figure S67. ¹¹⁹Sn NMR (CDCl₃) spectrum of compound 8.

Figure S68. Emission spectra of halochromism for compound 1 a), 2 b), 3 c), and 4 d).

Figure S69. Emission spectra of halochromism for compounds 6 a), 7 b) and 8 c).

System	1 _c	$1A^0$ Theo
<i>d</i> (O3-H)	0.708	0.962
d(N-Sn)	2.174	2.237
<i>d</i> (Sn-O1)	2.118	2.138
<i>d</i> (Sn-O2)	2.182	2.122
<i>d</i> (Sn-C18)	2.119	2.161
<i>d</i> (Sn-C14)	2.105	2.157
<i>d</i> (C7-N1)	1.320	1.297
<i>d</i> (C8-N1)	1.415	1.409
<i>d</i> (C1-O1)	1.311	1.312
α(O1-Sn1-O2)	154.93°	156.68
α(C18-Sn1-N1)	116.90°	117.79
α(C14-Sn1-N1)	105.10°	111.59
α(C14-Sn1-C18)	137.95°	130.60
α(C18-Sn1-O1)	91.00°	94.69
α(C18-Sn1-O2)	94.27°	94.27
α(C14-Sn1-O1)	93.59°	93.13
α(C14-Sn1-O2)	93.71°	97.25
α(O1-Sn1-N1)	81.22°	81.63
α(O2-Sn1-N1)	74.54°	75.14
γ(C7-N1-C8-C9)	30.61°	21.07

Table S4. Structural parameters obtained through X-ray diffraction structure (1_c) and theoretically calculated $(1A^0_{Theo})$ to compound 1. Where α and γ are bond angles in °, and *d* is the bond lengths in Å.

Figure. S70. Optimized structures of 1 and 2 in the ground (S_0) and the first-singlet excited (S_1) state: neutral (A^0), basic (B^-) and acid (C^+ and D^+) media. Atoms are denoted with red (oxygen), blue (nitrogen), gray (carbon), light gray (hydrogen), and green (tin) spheres.

System	A ⁰ /S ₀	A ⁰ /S ₁	B-/S ₀	B ⁻ / S ₁	C+/S ₀	C+/S ₁	D ⁺ / S ₀	D^+/S_1
$1 \gamma(C_7 - N_1 - C_8 - C_9)$	30.61°	26.04°	0.25°	10.18°	-0.70°	34.24°	31.6°	17.9°
2 γ(C ₇ -N ₁ -C ₈ -C ₉)	21.87°	29.78°	11.65°	30.17°	18.87°	9.93°	30.8°	16.0°
$1 d(\text{Sn-O}_2)$	2.121	2.098	2.147	2.063	2.134	2.126	2.653	2.434
$2 d(\text{Sn-O}_2)$	2.115	2.274	2.126	2.066	2.135	2.087	2.611	2.480

Table S5. Torsion angle $\gamma(C_7-N_1-C_8-C_9)$ and bond lengths $d(Sn-O_2)$ (in Å).

Table S6. Singlet \rightarrow Singlet absorption data in compounds 1 and 2 in the neutral (A⁰), basic (B⁻), and acid (C⁺ and D⁺) media considering the solvent effect (Aqueous Solutions, $\mathcal{E}=58.5$, and refraction=1.33). Where λ_a is the theoretical absorption wavelength (nm), *f* is the oscillator strength, H (HOMO), L (LUMO) and A is the assignment of transitions.

	CAM	I-B3LY	Р		B3LYP					
Systems	*λ _a	f	Active MOs	А	λ_{a}	f	Active MOs	Α		
1 4 0	398 (474)*	0.562	H→L	$n \rightarrow \pi^*$	527	0.342	H→L	$n \rightarrow \pi^*$		
IA°	292 (338)*	0.417	H-2→L	$\pi \rightarrow \pi^*$	383	0.464	H-2→L	$\pi { ightarrow} \pi^*$		
	427	0.899	H→L	$n { ightarrow} \pi^*$	566	0.591	H→L	$n { ightarrow} \pi^*$		
1B ⁻	334	0.324	H-2→L	$\pi \rightarrow \pi^*$	370	0.464	$H \rightarrow L+1$	$n { ightarrow} \pi^*$		
	307	0.139	$H \rightarrow L+1$	$n { ightarrow} \pi^*$	333	0.155	$H-1 \rightarrow L+1$	$\pi {\rightarrow} \pi^*$		
	562	0.417	H→L	$n { ightarrow} \pi^*$	689	0.193	H→L	$n \rightarrow \pi^*$		
1C ⁺	445	0.400	H-1→L	$\pi \rightarrow \pi^*$	506	0.617	H-2→L	$\pi \rightarrow \pi^*$		
	378	0.783	H-2→L	$\pi \rightarrow \pi^*$	404	0.466	$H \rightarrow L+1$	$\pi \rightarrow \pi^*$		
	344	0.675	H→L	$n { ightarrow} \pi^*$	469	0.294	H→L	$n \rightarrow \pi^*$		
1D+	305	0.336	H-1→L	$\pi \rightarrow \pi^*$	406	0.336	H-1→L	$\pi \rightarrow \pi^*$		
	286	0.145	H-2→L	$\pi \rightarrow \pi^*$	339	0.122	H-2→L	$\pi \rightarrow \pi^*$		
2 4 0	388 (466)*	0.584	H→L	$n \rightarrow \pi^*$	495	0.384	H→L	$n \rightarrow \pi^*$		
2A*	291 (338)*	0.265	H-2→L	$\pi {\rightarrow} \pi^*$	368	0.460	H-3→L	$\pi { ightarrow} \pi^*$		
	419	0.897	H→L	$n { ightarrow} \pi^*$	567	0.593	H→L	$n { ightarrow} \pi^*$		
2B-	332	0.348	H-2→L	$\pi \rightarrow \pi^*$	364	0.515	H-2→L	$\pi \rightarrow \pi^*$		
	304	0.120	$H \rightarrow L+1$	$n { ightarrow} \pi^*$	334	0.100	$H \rightarrow L+1$	$n { ightarrow} \pi^*$		
	549	0.383	H→L	$n{\rightarrow}\pi^{*}$	649	0.187	H→L	$n{\rightarrow}\pi^{*}$		
2C+	440	0.474	H-1→L	$\pi \rightarrow \pi^*$	542	0.575	H-1→L	$\pi \rightarrow \pi^*$		
	383	0.672	H-2→L	$\pi \rightarrow \pi^*$	320	0.401	H-1 \rightarrow L+1	$\pi \rightarrow \pi^*$		
	341	0.692	H→L	$n{\rightarrow}\pi^{*}$	447	0.333	H→L	$n{\rightarrow}\pi^{*}$		
$2D^+$	306	0.364	H-1→L	$\pi \rightarrow \pi^*$	399	0.353	H-1→L	$\pi \rightarrow \pi^*$		
	285	0.104	H-2→L	$\pi \rightarrow \pi^*$	334	0.131	$H \rightarrow L+1$	$\pi \rightarrow \pi^*$		

*Experimental absorption wavelength.

Table S7. Singlet \rightarrow Singlet emission data in compounds 1 and 2 in the neutral (A⁰), basic (B⁻), and acid (C⁺ and D⁺) media considering the solvent effect (Aqueous Solutions, ε =58.5, and refraction=1.33). Where λ_e is the theoretical emission wavelength (nm), *f* is the oscillator strength, A is the assignment of transitions, k_{rd} , and τ_{rad} are the rate of radiative transfer (s⁻¹) and radiative transfer lifetime (s), respectively.

		CAM	I-B3LYP		B3LYP					
Systems	$^*\lambda_e$	f	$k_{\rm rad} 10^8$	$ au_{rad} 10^{-9}$	Α	λ_{e}	f	$k_{\rm rad} \ 10^8$	$ au_{rad}$ 10-9	Α
1A ⁰	447	0.454	2.77	3.60	*π→π	576	0.285	6.85	1.46	*π→π
1B ⁻	449	0.661	5.56	1.80	*π→π	778	0.362	1.01	9.85	*π→π
1C ⁺	564	0.058	0.22	45.4	$^{*}\pi \rightarrow \pi$	753	0.068	0.20	48.9	*π→π
1 D ⁺	417	0.239	2.33	4.28	$^{*}\pi \rightarrow \pi$	656	0.059	0.53	18.9	*π→π
2A ⁰	440	0.414	3.58	2.79	*π→π	566	0.258	1.33	7.33	*π→π
2B-	439	0.017	0.01	101.4	*π→π	500	0.013	0.08	117.9	*π→π
2C+	549	0.354	2.24	4.64	$^{*}\pi \rightarrow \pi$	495	0.018	0.01	96.6	*π→π
2D+	470	0.581	4.17	2.40	$^{*}\pi \rightarrow \pi$	444	0.189	1.37	7.29	*π→π

*Experimental emission wavelength is 547 and 532 to 1 and 2, respectively.

Table S8. Morokuma-Ziegler EDA for all systems in the neutral (A^0), basic (B^-), and acid (C^+ and D^+) media. All values are in kcal mol⁻¹.

Molecule	ΔE_{Int}	ΔE_{Pauli}	ΔE_{Disp}	ΔE_{Elec}	ΔE _{Orb}
$1A^0$	-8901.7	25537.1	-75.60 (0.2%)	-6450.1 (15.8%)	-34363.3 (84.0%)
1B-	-8856.1	25174.1	-74.1 (0.2%)	-6360.0 (15.7%)	-33956.1 (84.1%)
1C+	-8846.8	32246.8	-75.8 (0.2%)	-6490.2 (15.8%)	-34527.6 (84.0%)
1 D +	-8853.2	32264.9	-76.5 (0.2%)	-6496.8 (15.8%)	-34544.8 (84.0%)
$2\mathbf{A}^{0}$	-9034.0	35744.0	-82.6 (0.2%)	-7206.0 (16.1%)	-37489.4 (83.7%)
2B-	-8994.4	35329.4	-82.2 (0.2%)	-7135.3 (16.1%)	-37106.3 (83.7%)
2C ⁺	-8980.2	36039.6	-83.4 (0.2%)	-7267.9 (16.1%)	-37668.4 (83.7%)
2D+	-8986.4	36082.4	-84.4 (0.2%)	-7276.7 (16.1%)	-37707.7 (83.7%)

Systems	1A ⁰	1B ⁻	1C ⁺	1D+
k_1	-720.9	-729.2	-696.0	-699.0
ρ				
Systems	1A ⁰	1B-	1C ⁺	2D+
<i>k</i> ₁	-746.2	-778.5	-737.8	-711.3
ρ				

Table S9. Contours of the NOCV deformation density (ρ) and the contribution of the interaction to the total orbital interaction (k) are presented in kcal mol⁻¹ for all systems in the neutral (A^0), basic (B^-) and acid (C^+ and D^+) media.