Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Catalytic SrMoO₄ nanoparticles and conducting polymer composite sensor for monitoring of K⁺-induced dopamine release from neuronal cells

Khatun A Jannath[‡], Mahmood Hassan Akhtar^{‡abd}, N.G. Gurudatt^{a,b,e}, Deog-Su Park^a, Kwang-Bok Kim^{c*}, and Yoon-Bo Shim^{a,b*}

- ^a Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan 46241, Republic of Korea
- ^b Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
- ^{d.} Present address: National University of Technology, Islamabad, Pakistan
- ^{e.} Present address: Department of Mechanical Engineering, Yonsei University, Republic of Korea.

[*] Corresponding author: Prof. Yoon-Bo Shim, Dr. Kwang-Bok Kim

E-mail: ybshim@pusan.ac.kr, kb815kim@kitech.re.kr

Tel.: +82-51-510-2244; Fax: +82-51-514-2122.

Figure S1: FE-SEM images of SrMoO₄ nanoparticles when treated with different time and temperature (a) 8 hr and 140 °C, (b) 10 hr and 170 °C.

Figure S2: SEM image of pTBA at GC electrode

Figure S3: The deconvoluted O 1s spectrum of a) SrMoO₄ and b) pTBA/SrMoO₄.

Figure S4: CV responses of pTBA, SrMoO₄ and pTBA/SrMoO₄/Nf electrodes in 0.1 M PBS (pH 7.4) containing 200 µM DA.

Figure S5: a) pTBA/SrMoO₄/Nf sensor response to the different concentrations of DA from 0.5 to 500 μ M and (b) the corresponding calibration plot.

Figure S6: Optimized structure of DA and part of SrMoO₄ obtained by DFT calculation.

Figure S7: Molecular electrostatic potential (MEP) analysis of DA and part of SrMoO₄.

Figure S8: High resolution XPS spectrum of a) Mo 3d and b) Sr 3d before and after DA oxidation at pTBA/SrMoO₄/Nf electrode.

Figure S9: a) CV responses of pTBA/SrMoO₄/Nf electrodes in 0.1M PBS containing 200 μM DA with SrMoO₄ NPs synthesized at various temperature and time. b) CV responses of pTBA/SrMoO₄/Nf electrode with different SrMoO₄ loading.

Figure S10: Optimization of the experimental conditions for the DA sensor: (a) No. of pTBA cycles (b) nation concentrations (c) effect of potential change on the sensor performance, and (d) optimum pH value for PBS buffer solution.

Figure S11: (a) Reproducibility of the proposed sensor containing different DA concentrations (0.5 to 150 μ M) in 0.1 M PBS (pH 7.4). (b) Stability of the prepared sensor containing 200 μ M DA in 0.1 M PBS (pH 7.4) for 55 days.