Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Model Cancer Metastasis using Acoustically Bioprinted Patient-Derived 3D Tumor Microtissues

Hui Chen,^a Liang Du,^a Juan Li,^a Zhuhao Wu,^a Zhiyi Gong,^a Yu Xia,^a Zhou Fan,^c Qun Qian,^c Zhao Ding,^c Hang Hu,*^c and Shishang Guo,*^{ab}

^aKey Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China

E-mail: gssyhx@whu.edu.cn

^bHubei Yangtze Memory Laboratories, Wuhan 430205, China

E-mail: gssyhx@whu.edu.cn

^cDepartment of Colorectal and Anal Surgery, Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430072, China

E-mail: minihh0827@126.com

*Correspondence and requests for materials should be addressed to H.H., or S.S.G. (Electronic mail: minihh0827@126.com, gssyhx@whu.edu.cn)

Solutions

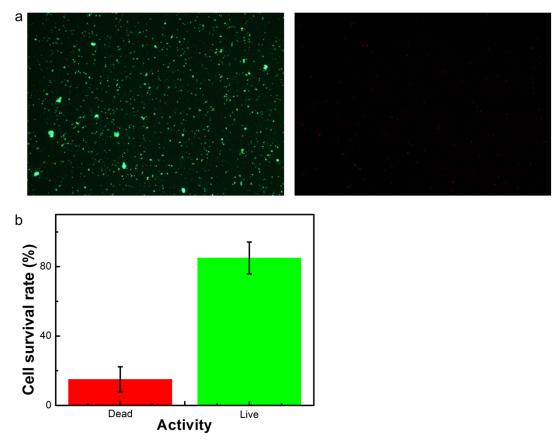
1x Penicillin/Streptomycin in PBS: (1X PBS / 1x Penicillin/Streptomycin) 1ml 100x Penicillin/Streptomycin was added to 100ml 1X PBS and mix well.

1% BSA solution: (1X PBS / 1% BSA) 5.0g of bovine serum protein was added to 500ml of 1X PBS, mixed evenly, and then filtered through a 0.22um filter to obtain the 1% BSA solution.

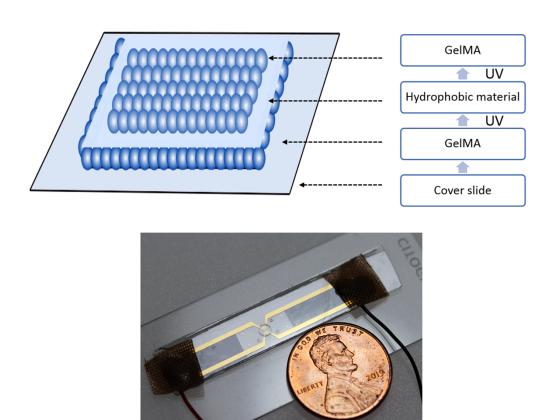
Blocking buffer: (1X PBS / 5% regular serum / 0.3% Triton TM X-100) To prepare 10 ml, add 0.5 ml of normal goat serum and 30 μ l of Triton TM X-100 to 9 ml of 1X PBS and mix well.

Antibody dilution buffer: (1X PBS / 1% BSA / 0.3% TritonTM X-100) To prepare 10 ml, add 30 ul Triton TM X-100 to 9.70 ml 1% BSA solution.

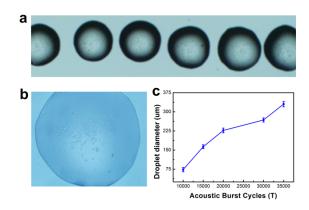
Tissue digestive enzymes: (4.7ml RPMI / 200ul enzyme H / 100ul enzyme R / 25ul enzyme A) The corresponding amount of enzyme were added to serum-free medium RPMI, mix the liquid with a pipette dozens of times and mix well.


Preparation:

Miltenyi Human tumor dissociation kit:


Prepare Enzyme H by reconstitution of the lyophilized powder in each vial with 3 mL of RPMI 1640 or DMEM. Prepare aliquots of appropriate volume to avoid repeated freeze-thaw cycles. Store aliquots at –20 °C. This solution is stable for 6 months after reconstitution. For cell culture experiments subsequent to tissue dissociation, Enzyme H should be sterile filtered prior to aliquoting.

Prepare Enzyme R by reconstitution of the lyophilized powder in the vial with 2.7 mL RPMI 1640 or DMEM. Prepare aliquots of appropriate volume to avoid repeated freeze-thaw cycles. Store aliquots at −20°C. This solution is stable for 6 months after reconstitution. ▲ Note: Make sure to thoroughly mix this suspension immediately before withdrawing the required reaction volume!


Prepare Enzyme A by reconstitution of the lyophilized powder in the vial with 1 mL of Buffer A supplied with the kit. Do not vortex. Prepare aliquots of appropriate volume to avoid repeated freeze-thaw cycles. Store aliquots at –20°C. This solution is stable for 6 months after reconstitution.

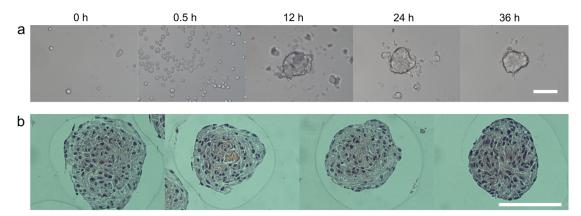

Fig. S1 (a) Characterization of the survival rate of cells isolated from human tissues. Red means dead cells, green means live cells. (b) Quantification of cell viability.

Fig. S2 (a) Schematic diagram of the construction of a 3-dimensional model of acoustic 3D printed devices. (b) Physical image of acoustic 3D printing device.

Fig. S3 (a) Acoustic 3D printing devices perform droplet placement and (b) manipulation of cell-containing droplets. (c) the size of the acoustic droplet changes with the acoustic signal.

Fig. S4 (a) The patient-derived cells were quickly cultured into tumor micro-tissues within 36 hours. (b) HE section of patient-derived tumor microtissue. The scale bar is 100um.

$$\begin{array}{c} CH_3 \\ O \\ \hline \\ CH_3 \\ \hline \\ CH_3 \\ \hline \\ 405 \text{nm irradiation} \end{array}$$

Fig. S5 The GelMA curing process.

 Table S1. Pulse signal parameter setting.

Amp	Frequency	Trig	Burst	Gain
100-140mv	38.13 MHz	2.0s	25000	<25w

Reagents

Table S2. Reagents used in the tissue digestion and cell culture.

Reagent	company	Cat.NO	Final concentration
Tumor Dissociation	Miltenyi	130-095-929	Instruction
Kit, human			concentration
Primocin	Invivogen	Ant-pm-1	50 mg·ml⁻¹
DMEM/F-12	GIBCO	C11330500BT	1X
Y-27632	Abmole	Y-27632	10 uM
Penicillin/Streptomycin	Invitrogen	15140-122	100U·ml ⁻¹ /100mg·ml ⁻¹
D-PBS	Gibco	14190250	1X
PBS	Gibco	10010023	1X
FBS	Gibco	16140071	10%
BSA	Sigma	A1933-5G	1mg/ml
Triton TM X-100	Sigma	X100	0.3%
RPMI	Gibco	72400047	1X
DMSO	Sigma	94563-10ml	10%
Paraformaldehyde	Sigma	158127	4%
Trypsin	Gibco	25200056	0.25%

 Table S3. The antibodies used for Immunofluorescence were listed below:

Primary antibodies	Company		Cat.NO	Dilution
EGF Receptor (E746-A750del	Cell	Signaling	2085S	1:250
Specific) (D6B6) XP® Rabbit mAb#2085	Technology			
CD44 (156-3C11) Mouse	Cell	Signaling	3570S	1:400
mAb#3570	Technology			
CD133 (D2V8Q) XP® Rabbit	Cell	Signaling	64326S	1:400
mAb#64326	Technology			
Ki67	ZSGB-BIO		ZM0166	1:100
Secondary antibodies	Company		Cat.NO	Dilution
Anti-rabbit IgG (H+L), F(ab')2	Cell	Signaling	8885S	1:250
Fragment (PE Conjugate)#8885	Technology,			
Anti-mouse IgG (H+L), F(ab')2	Cell	Signaling	4408S	1:250
Fragment (Alexa Fluor® 488 Conjugate)#4408	Technology,			

Table S4. Patients' baseline characteristic.

Patie	Sex	Age(TNM	Tumor	Depth of	Differentiat	Invasion ability
nt		year	stage	location	tumor	ion	
numb		s)			invasion		
er							
P(V)1	mal	69	pT3N0	sigmoid	Subserosal	moderate	No clear vessel and nerve
	e		Mx	colon	layer		invasion
P(V)2	fem	59	pT3N2b	Near the	Subserosa	moderate	Visible vascular tumor
	ale		Mx	junction of	fibrofatty		thrombus, no clear nerve
				straight and	tissue		invasion
				second, the			
				size is			
				about			
				5cm×5cm			
P(V)3	mal	71	pT3No	Mid rectum	Serosa	moderate	No clear vessel and nerve
	e		Mx		fibrofatty		invasion
					tissue		
P(V)4	fem	49	pT4bN1	Ascending	Serosal layer	moderate	No clear vessel and nerve
	ale		Mx	colon			invasion
P(V)5	mal	58	ypT3N0	Peritoneal	Serosal layer	G2	No clear vessel and nerve
	e		Mx	reflex		(moderate)	invasion
P(V)6	fem	44	ypT3N2	Anterior	Extramuscul	moderate	Vascular infiltration: visible;
	ale		Mx	peritoneal	ar fibrous		nerve infiltration: visible
				reflex	tissue		
P(V)7	mal	66	pT3N2b	Upper	Extramuscul	Poor	Vascular infiltration: visible;
	e		Mx	rectum	ar fibrofatty		nerve infiltration: visible
					tissue		