Supporting information

A highly luminescent and stable copper halide ionic hybrid structure

with anionic CuBr₂(*tpp*)₂ module

Hua Tong,^{+a} Chanchan Xu,^{+b} and Wei Liu^{*a}

^a School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.

^b Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, China

Materials and Characterization

Materials. Copper (I) bromide, triphenylphosphine, 1,4-diazabicyclo[2.2.2]octane (ted), benzyl bromide, acetone, toluene, dichloromethane, ethanol were purchased from Aladdin. All reagents and solvents were used without further purification unless otherwise stated.

Synthesis of *bz-ted. Ted* (1.12 g, 10 mmol) was dissolved in acetone (50 mL) upon sonication and benzyl bromide (1.71 g, 10 mmol) was added to it under magnetic stirring. A white precipitate formed in a few hours. The precipitate was collected by filtration, washed with ethyl acetate, and dried under vacuum. The yield is 79%.

Synthesis of 1. CuBr (0.29 g, 0.2 mmol), *tpp* (0.5 g) and *bz-ted* (0.2 mmol) were added to a CH₂Cl₂/toluene mixture (1 : 1/v : v) and were heated at 80 °C overnight. Colorless plate-shaped crystals were filtered via vacuum filtration for further characterization. The weight of the product is 0.15 g. The reaction yield is 75 % based on Cu.

Sample Washing and Drying. Upon completion of reactions, a powder sample of **1** was collected by filtration from the reaction solution and washed with a small amount of acetonitrile three times. The sample was then dried in a vacuum oven overnight before other measurements were made.

Single crystal X-ray diffraction (SXRD). Single crystal X-ray diffraction data were collected at 203K on a Bruker APEX-II CCD with graphite-monochromated Ga Kalpha radiation ($\lambda = 1.34139$ Å) The structures were solved by direct methods and refined by full-matrix least-squares on F^2 using the Bruker SHELXTL package.¹ These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_re-quest/cif. The structures were deposited in Cambridge Structural Database (CSD) and the number is 2013295.

Powder X-ray diffraction (PXRD). PXRD analyses were carried out on a Bruker D8 Advance automated diffraction system using Cu K α 1 radiation (λ =1.54056 Å). The data

were collected at room temperature in a 2 θ range of 3–50° with a scan speed of 1°/min. The operating power was 40 kV/40 mA.

Optical diffuse reflectance measurements. Optical diffuse reflectance spectra were measured at room temperature on a Shimadzu UV-3600 spectrophotometer. Data were collected in the wavelength range of 300-1200 nm. BaSO₄ powder was used as a standard (100% reflectance). A similar procedure as previously described was used to collect and convert the data using the Kubelka-Munk function. The scattering coefficient (S) was treated as a constant since the average particle size of the samples used in the measurements was significantly larger than 5 μ m.

Thermogravimetric (TG) analysis. TG analyses of the title compounds were performed on a computer-controlled TG 550 (TA Instrument). Pure powder samples were loaded into platinum pans and heated with a ramp rate of 10 $^{\circ}$ C/min from room temperature to 800 $^{\circ}$ C.

Excitation spectrum measurements. Excitation spectra were measured at room temperature on an FLS1000 spectrofluorometer (Edinburgh Instruments) monitored at a maximum of emission spectra.

Photoluminescence measurements. Steady-state photoluminescence spectra were obtained at room temperature and 77 K (liquid nitrogen was used to cool the samples) on an FLS1000 spectrofluorometer.

Internal quantum yield measurements. Internal quantum yield (QY) of samples in powder form was measured on a C9920-03 absolute quantum yield measurement system (Hamamatsu Photonics) with a 150 W xenon monochromatic light source and 3.3 inch integrating sphere. Sodium salicylate (99%, Merck) was used as the standard with an IQY value of 60 % when excited at 360 nm. The IQY value of the standard was measured to be 62%, indicating an experimental error of less than 5 %.

Time-resolved photoluminescence. Time-Resolved Emission data were collected at room temperature using the FLS1000 spectrofluorometer. The dynamics of emission decay were monitored by using the FLS1000's time-correlated single-photon counting capability (1024 channels; 10 μ s window) with data collection for 10,000 counts. Excitation was provided by an Edinburgh EPL-360 picosecond pulsed diode laser. Long lifetime measurements at 77K (1024 channels; 800 μ s window) were collected using Xe flash lamp as the excitation source. The lifetime was obtained by mono-exponential fitting.

Density-Functional Theory (DFT) calculations. Compound **1** is a coordination compound consisting of a complex cation and a complex anion. DFT calculations have been carried out on the cation and anion, respectively, using two different functions (M06 and B3LYP-D3). The HOMO-LUMO gap of the anion is 3.86 eV (M06) and 3.45

eV (B3LYP-D3), which are generally consistent with each other and agree with the experimental observation.

Figure S1. ¹H NMR spectrum of the organic ligand *bz-ted*.

Figure S2. PXRD patterns of as-made (top) and simulated pattern of compound 1 (bottom).

Figure S3. Emission spectra of 1 under various excitation energies.

Figure S4. Emission spectra of 1 (black), *tpp* (blue) and *bz-ted* (red). $\lambda_{ex} = 360$ nm.

Figure S5. Luminescence decay curve at room temperature of compound 1.

Figure S6. TGA plot of compound **1**.

Compound	1					
Formula	$C_{49}H_{51}Br_2CuN_2OP_2$					
Fw	969.21					
Space Group	<i>P</i> -1					
<i>a</i> (Å)	13.1166(10)					
<i>b</i> (Å)	13.1497(10)					
<i>c</i> (Å)	15.2644(12)					
α (°)	80.358(3)					
β (°)	82.951(3)					
γ (°)	60.542(3)					
$V(Å^3)$	2257.5(3)					
Z	2					
<i>T</i> (K)	203(2)					
λ (Å)	1.34139					
ρ (g·cm ⁻³)	1.426					
$R_1^a \left[I > 2\sigma(I)\right]$	0.0397					
$wR_2^a[I > 2\sigma(I)]$	0.0964					
R_1^a (all data)	0.0334					
wR_2^a (all data)	0.0923					
CCDC #	2013295					
${}^{a} R_{1} = \Sigma F_{o} - F_{c} / \Sigma F_{o} . \ wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}.$						

Table S1. Crystal data and structure re nement details of compounds 1

Table S2. Elemental analysis of compound 1.

Compound		С %	Н%	N %
	Calculated	60.7	5.3	2.9
	Experimental	60.0	5.2	2.9

Table S3. Density-Functional Theory (DFT) calculation results of compound 1.

Method	B3LYP-D3	M06
Species HOMO/LUMO (eV)		
CuBr ₂ (<i>tpp</i>) ⁻	3.45	3.86
bz-ted ⁺	5.90	6.43

Table S4. A summary of recent reported blue-emitting organic-inorganic hybrid structures

Compounds	$\lambda_{ex} (nm)$	$\lambda_{em} (nm)$	Emission color	IQY (%)
$0D-Cu_2I_2(tpp)_2(4-pc)_2^1$	360	450	blue	86.7
$0D-Cu_2I_2(tpp)_2(3-pc)_2^1$	360	455	blue	90.3
0D-Cu ₂ I ₂ (<i>tpp</i>) ₂ (4,6-dm-	360	465	blue	72.3
$pm)_{2}^{1}$				
0D-Cu ₂ I ₂ (<i>tpp</i>) ₂ (<i>1-me-</i>	360	465	blue	74.3
$bzim)_2^1$				
1D-CuI(3-pc) ²	360	469	blue	37.2
1D-Cu ₂ I ₂ (tpp) ₂ (bpp) ³	360	458	blue	91.7
[BAPrEDA]PbCl ₆ ·(H ₂ O) ₂ ⁴	254	392	blue-violet	21.3
$(C_{13}H_{19}N_4)_2PbBr_4^5$	360	460	blue	40
Bmpip ₂ PbBr ₄ ⁵	360	470	blue	24
(C ₉ NH ₂₀) ₇ (PbCl ₄)Pb ₃ Cl ₁₁ ⁶	360	470	blue	83
K ₂ CuCl ₃ ⁷	291	392	blue	96.58
K ₂ CuBr ₃ ⁷	296	388	blue	55
Rb ₈ CuSc ₃ Cl ₁₈ ⁸		473	blue	

Reference

- W. Liu, K. Zhu, S. J. Teat, B. J. Deibert, W. Yuan and J. Li, *J. Mater. Chem. C.*, 2017, 5, 5962-5969.
- 2. X. Zhang, W. Liu, G. Z. Wei, D. Banerjee, Z. Hu and J. Li, *J. Am. Chem. Soc.*, 2014, **136**, 14230-14236.
- 3. W. Liu, Y. Fang, G. Z. Wei, S. J. Teat, K. Xiong, Z. Hu, W. P. Lustig and J. Li, *J. Am. Chem. Soc.*, 2015, **137**, 9400-9408.
- C. Sun, K. Jiang, M.-F. Han, M.-J. Liu, X.-K. Lian, Y.-X. Jiang, H.-S. Shi, C.-Y. Yue and X.-W. Lei, *J. Mater. Chem. C.*, 2020, 8, 11890-11895.
- H. Lin, C. Zhou, M. Chaaban, L.-J. Xu, Y. Zhou, J. Neu, M. Worku, E. Berkwits, Q. He, S. Lee, X. Lin, T. Siegrist, M.-H. Du and B. Ma, *ACS Materials Lett.*, 2019, 1, 594-598.
- C. Zhou, H. Lin, M. Worku, J. Neu, Y. Zhou, Y. Tian, S. Lee, P. Djurovich, T. Siegrist and B. Ma, J. Am. Chem. Soc., 2018, 140, 13181-13184.
- T. D. Creason, T. M. McWhorter, Z. Bell, M.-H. Du and B. Saparov, *Chem. Mater.*, 2020, 32, 6197-6205.
- J. Lin, H. Chen, J. Kang, L. N. Quan, Z. Lin, Q. Kong, M. Lai, S. Yu, L. Wang and L.-w. Wang, *Matt.*, 2019, 1, 180-191.