Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information for

Flexible Random Resistive Access Memory with FeC-rGO Nanocomposites for Artificial Synapses

Jiankui Zhou,^a Hanfang Feng,^a Yadong Wang,^a Qingqing Sun,^a Yingliang Liu,^a Xuying Liu*^a,

Li Zhang*a and Shaokui Cao*ab

^a School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001,

People's Republic of China

^b Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou

University, Zhengzhou 450001, People's Republic of China.

Characterization of FeC-rGO nanocomposite.

Fig. S1 shows the FTIR spectra of FeC, GO, rGO and FeC-rGO. Different from GO, the absorption peak of FeC-rGO disappears at 1723 cm⁻¹, suggesting the C=O in the FeC-rGO has been reduced.^{S1, S2} There appear obvious absorption peaks at 1630 cm⁻¹, 1389 cm⁻¹ and 1050 cm⁻¹, corresponding to the C=C stretching vibration of rGO, C-H bending vibration of ferrocene, and C-Fe stretching vibration, respectively.^{S3} Moreover, C-H stretching vibration

of FeC-rGO is red-shift relative to that of FeC, which is an evidence of the stronger interaction between FeC and rGO.^{S4, S5}

Fig. S1 FTIR spectra of FeC, GO, rGO and FeC-rGO.

Compared to GO, the $\pi \rightarrow \pi^*$ absorption peak of rGO-FeC is red-shift to 269 nm, and the $n \rightarrow \pi^*$ absorption peak (λ =304 nm) disappears, suggesting that the rGO is fully reduced by ascorbic acid.^{S6} Additionally, there appears a wider shoulder peak at 300~600 nm for rGO-FeC, which is caused by the stronger electronic interaction between FeC and rGO.^{S7} As shown in **Fig. S2**, the rGO-FeC can well disperse in ethanol. Unlike GO, the ethanol dispersion solution of FeC-rGO is black, suggesting that the graphene in the complex has been reduced.

Fig. S2 UV-Vis spectra of FeC, GO and FeC-rGO.

Supplementary Figures

Fig. S3 SEM images of rGO.

Fig. S4 SEM images of FeC-rGO and corresponding O, C, Fe mapping (rectangle area marked with red solid line) and EDS; The rectangle area using red dotted line shows the

stacked lamellar structure of FeC-rGO.

Fig. S5. Representative I-V curves of (a) Al/rGO/ITO and (b) Al/FeC/ITO devices.

Table S1 Comparison of memory performance of FeC-related memristor devices

Material	Device Structure	ON/OFF	V _{SET} /V _{RESET}	Retenion	WRER	Ref.
Ferrocenylphenyl-NHCO-GO	Al/FPArGO/ITO, 50nm	~103	2.1 / -1.9	1000s	1000	S8
PFT2-Fc	Al/PFT2-Fc/LiF/ITO, 50 to 60 nm	~103	-1.9 / 1.4	7h	100	S9
Ferrocene-containing metallopolymers*	Au/Polymer/ITO/Glass, 120 nm and 80 nm	<102	1.89, 1.54	-	-	S10
DAFcTPA/6FDA PI (PI-xFc)	Au/PI-xFc/ITO, ~50 nm	103	1.4 / -3.2	4000s	108	S11
Stb-1G-FcD	Al/dendrimer/LiF/ITO, 50nm	~103	-2.8 / 2.8			S12
Py-Fc	Al/Py-Fc/ITO, 50nm		-1.6 / ~3	12000s	103	S13
Ferrocene-terminated hyperbranched polyimide (HBPI-Fc)*	Al/HBPI-Fc/ITO, 50nm	104	2.2 / -2.6	10 ⁴ s	-	S14
Ferrocene-terminated hyperbranched polyimide (HBPI-Fc)*	Al/HBPI-Fc/ITO, 50nm	104	2.5 to 3.2 / -3.3 to -2.7	10 ⁴ s	-	S15
Ferrocene-g-6FDA/DHTM PI	Au ferrocene-g-6FDA/DHTM PI ITO, ~50nm	103	~1.5 / -3.0	300s	-	S16
Non-conjugated ferrocene- containing copolymers FcCP Conjugated ferrocene- containing poly(fluorenylethynylene)s (PFcFE1–PFcFE4)	Al/FcCP/ITO, ~50nm	10 ³ to 10 ⁴	-0.5 to -2.5 / 3.2 to 3.7	10 ⁴ s	104	S17
	Al/PFcFE/ITO, ~50nm	10 ³ to 10 ⁴	~0.5 / ~3	3000 s	105	S18
PFTPA-Fc (redox active moieties of triphenylamine (TPA) and ferrocene (Fc) onto the pendants of fluorene skeletons) #	Pt/PFTPA-Fc/ITO, ~130 nm	-	-	-	-	S19
This work	Al/FeC-rGO/ITO, ~100 nm	10 ⁸	-1.7/+2.1	10 ⁵	500	

*Write Once Read Many times memory (WORM)

Memristors

Fig. S6. Photographs of flexible Al/FeC-rGO/ITO/PET devices of flat and different bending radius.

Fig. S7. SEM images of the surfaces of the flexible device before (Left) and after (Right) bending

Fig. S8. (a) I-V curve of Au/FeC-rGO/ITO device; (b) LRS/HRS resistance of Al/FeC-rGO/ITO with different areas; (c) I-V curve of Al/FeC-rGO/Al device; (d) I-V curve of Al/GO-FeC/ITO device.

Fig. S9. log(I)–log(V) plot of RESET process

Table S2 coefficient and R_square of SET and RESET processes.									
Processes		1	2 3		4	5			
	Interval	-0.005 to -	-0.175 to -	-1.025 to -	-1.440 to -	-3.000 to -			
SET	(V)	0.175	1.025	1.440	1.700	0.005			
	coefficient	0	1.2	2.8	24.6	1.3			
	R_square	0.0227	0.1376	0.3357	0.8257	0.9804			
RESET	Interval	0.005 to	2.110 to	3.000 to	1.395 to	0.820 to			
	(V)	2.110	3.000	1.395	0.820	0.005			
	coefficient	1.3	2.0	3.5	1.2	0			
	R_square	0.9915	0.8474	0.9236	0.6628	0.1316			

Reference

- S1 M. Kudus, M. Zakari, H. Akil, F. Ullah and F. Javed, J. King Saud University, 2020, 32, 910.
- S2 Z. Hou, Y. Zhou, S. Wang, M. Wang, X. Hu, L. Zhou and G. Li, *Adv. Mater. Res.*, 2013, 807, 2805.
- S3 J. Enlow, H. Jiang, J. T. Grant, K. Eyink, W. Su and T. J. Bunning, *Polymer*, 2008, 49, 4042.
- S4 M. J. Deka and D. Chowdhury, J. Phys. Chem. C, 2016, 24, 218.
- S5 K. Deng, J. Zhou and X. Li, *Electrochim. Acta*, 2013, 95, 18.
- S6 A. D. Adhikari, R. Oraon, S. K. Tiwari, N. K. Jena, J. H. Lee, N. H. Kim and G. C. Nayak, *Chem.-Asian J.*, 2017, **12**, 900.
- S7 C. Su, L. Ji, L. Xu, X. Zhu, H. He, Y. Lv, M. Ouyang and C. Zhang, *RSC Adv.*, 2015, 5, 14053.
- S8 C. Jin, J. Lee, E. Lee, E. Hwang and H. Lee, Chem. Commun., 2012, 48, 4235.
- S9 T. Choi, K. Lee, W. Joo, S. Lee, T. Lee and M. Chae, J. Am. Chem. Soc., 2007, 129, 9842.

- S10 X. Cheng, A. Md, H. Lian, Z. Zhong, H. Guo, Q. Dong and V. Roy, J. Organomet. Chem., 2019, 892, 34.
- S11 R. Hao, N. Jia, G. Tian, S. Qi, L. Shi, X. Wang and D. Wu, *Mater. Design*, 2017, 139, 298.
- S12 C. Kim, W. Joo, E. S. Song, H. J. Kim, J. Kim, C. Park, H. L. Lee and C. Kiml, Synthetic Met., 2007, 157, 640.
- S13 Y. Li, X. Zhu, Y. Li, M. Zhang, C. Ma, H. Li, J. Lu and Q. Zhang, *ACS appl. Mater. interfaces*, 2019, **11**, 40332.
- S14 H. Tan, H. Yao, Y. Song, S. Zhu, H. Yu and S. Guan, Dyes Pigments, 2017, 146, 210.
- S15 H. Tan, H. Yu, Y. Song, S. Zhu, B. Zhang, H. Yao and S. Guan, J. Polym. Sci. Pol. Chem., 2018, 56, 505.
- S16 G. Tian, S. Qi, F. Chen, L. Shi, W. Hu and D. Wu, Appl. Phys. Lett., 2011, 98, 203302.
- S17 J. Xiang, X. Li, Y. Ma, Q. Zhao, C. Ho and W. Wong, J. Mater. Chem. C, 2018, 6, 11348.
- S18 J. Xiang, T. Wang, Q. Zhao, W. Huang, C. Ho and W. Wong, J. Mater. Chem. C, 2015, 4, 921.
- S19 B. Zhang, F. Fan, W. Xue, G. Liu, Y. Fu, X. Zhuang, X. H. Xu, J. Gu, R. W. Li and Y. Chen, *Nat. Commun.*, 2019, **10**, 736.