supplementary information:

$\mathrm{LaMoBO}_{6}: \mathbf{T b}^{3+}, \mathrm{Eu}^{3+} / \mathbf{S m}^{3+}, \mathrm{Bi}^{\mathbf{3 +}}$ yellow phosphor with exceptionally
high quantum yield that can be excited by blue light
Shuai Yang, ${ }^{\text {a,b\# }}$ Bin Jiang, ${ }^{\text {a\# }}$ Jiahao Wu, ${ }^{\text {a }}$ Chungang Duan, ${ }^{\text {a,c }}$ Yongkui Shan, ${ }^{\text {b }}$ Qingbiao Zhao ${ }^{\text {** }}$
${ }^{\text {a }}$ Key Laboratory of Polar Materials and Devices (MOE), Department of Electronic Science, East China Normal University, Shanghai, 200241 China
${ }^{\mathrm{b}}$ School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241 China
${ }^{\text {c }}$ Collaborative Innovation Center of Extreme Optics, Shanxi University, Shanxi 030006, China
\# These authors contributed equally
To whom correspondence should be addressed:
Dr. Qingbiao Zhao
Email: qbzhao@ee.ecnu.edu.cn
Tel: +86-021-33503200

Figure S1. The XRD Rietveld refinement of $\mathrm{LaMoBO}_{6}(\mathrm{LMBO})$ host lattice.

Table S1. The Rietveld refinement parameters and unit cell parameters of LMBO host lattice and LMBO: $0.1 \mathrm{~Tb}^{3+}$ phosphor

Parameters	LMBO host lattice	LMBO: $0.1 \mathrm{~Tb}^{3+}$ phosphor
Space group	$P 2_{l} / c$	$P 2_{l} / c$
$\mathrm{a}(\AA)$	10.29549	10.25266
$\mathrm{~b}(\AA)$	4.16388	4.15637
$\mathrm{c}(\AA)$	23.84481	23.72538
α	90°	90°
β	115.38073°	115.16018°
γ	90°	90°
$\left.\mathrm{V}^{\circ} \AA^{3}\right)$	923.5440	915.1051
R_{p}	6.28%	5.86%
R_{wp}	10.08%	9.68%
$\mathrm{R}_{\mathrm{exp}}$	2.00%	1.98%
$\mathrm{R}_{\text {bragg }}$	3.82%	3.28%
gof	5.03	4.89

Figure S2. (A \& B) The color coordinate diagrams of LMBO: xTb^{3+} green phosphors under the excitation of 378 nm and 487 nm .

Figure S3. (A \& B) The fitting of $\ln \left(\mathrm{I}_{0} / \mathrm{I}\right)$ against $\ln \mathrm{r}$ for LMBO: xTb^{3+} green phosphors with the value of θ being 6 and 8 , respectively; ($\mathbf{C} \& \mathbf{D}$) The schematic diagram for the cross-relaxation of Tb^{3+} and Sm^{3+}.

Figure S4. (A \& B) The color coordinate diagram of LMBO: $0.04 \mathrm{~Tb}^{3+}, \mathrm{yEu}^{3+}$ yellow phosphors under the excitation of 378 nm and 487 nm .

Figure S5. (A \& B) The color coordinate diagram of LMBO: $0.04 \mathrm{~Tb}^{3+}, \mathrm{y}^{\prime} \mathrm{Sm}^{3+}$ yellow phosphors under the excitation of 378 nm and 487 nm .

Table S2. The quantum yields of the LMBO: $0.4 \mathrm{~Tb}^{3+}$ and LMBO: $0.4 \mathrm{~Tb}^{3+}, \mathrm{xEu}^{3+} /$ Sm^{3+} phosphors.

Doping ions and ratios	378 nm	487 nm
$0.4 \mathrm{~Tb}^{3+}$	8%	77%
$0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Eu}^{3+}$	24%	$\mathbf{8 2 \%}$
$0.4 \mathrm{~Tb}^{3+}, 0.01 \mathrm{Eu}^{3+}$	22%	58%
$0.4 \mathrm{~Tb}^{3+}, 0.02 \mathrm{Eu}^{3+}$	29%	23%
$0.4 \mathrm{~Tb}^{3+}, 0.03 \mathrm{Eu}^{3+}$	31%	33%
$0.4 \mathrm{~Tb}^{3+}, 0.04 \mathrm{Eu}^{3+}$	58%	41%
$0.4 \mathrm{~Tb}^{3+}, 0.05 \mathrm{Eu}^{3+}$	37%	28%
$0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Sm}^{3+}$	12%	56%
$0.4 \mathrm{~Tb}^{3+}, 0.01 \mathrm{Sm}^{3+}$	19%	19%
$0.4 \mathrm{~Tb}^{3+}, 0.02 \mathrm{Sm}^{3+}$	23%	17%
$0.4 \mathrm{~Tb}^{3+}, 0.03 \mathrm{Sm}^{3+}$	19%	13%
$0.4 \mathrm{~Tb}^{3+}, 0.04 \mathrm{Sm}^{3+}$	13%	10%
$0.4 \mathrm{~Tb}^{3+}, 0.05 \mathrm{Sm}^{3+}$	14%	9%

Table S3. The quantum yields of the LMBO: $0.4 \mathrm{~Tb}^{3+}, \mathrm{zBi}^{3+}$ and LMBO: $0.4 \mathrm{~Tb}^{3+}$, $0.005 \mathrm{Eu}^{3+} / \mathrm{Sm}^{3+}, \mathrm{zBi}^{3+}$ phosphors.

Doping ions and ratios	378 nm	487 nm
$0.4 \mathrm{~Tb}^{3+}, 0.0005 \mathrm{Bi}^{3+}$	23%	57%
$0.4 \mathrm{~Tb}^{3+}, 0.001 \mathrm{Bi}^{3+}$	25%	70%
$0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Bi}^{3+}$	22%	60%
$0.4 \mathrm{~Tb}^{3+}, 0.01 \mathrm{Bi}^{3+}$	13%	46%
$0.4 \mathrm{~Tb}^{3+}, 0.01 \mathrm{Eu}^{3+}, 0.001 \mathrm{Bi}^{3+}$	27%	86%
$0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Eu}^{3+}, 0.005 \mathrm{Bi}^{3+}$	24%	81%
$0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Eu}^{3+}, 0.01 \mathrm{Bi}^{3+}$	21%	88%
$0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Eu}^{3+}, 0.02 \mathrm{Bi}^{3+}$	14%	92%
$0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Eu}^{3+}, 0.03 \mathrm{Bi}^{3+}$	5%	78%
$0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Sm}^{3+}, 0.001 \mathrm{Bi}^{3+}$	12%	68%
$0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Sm}^{3+}, 0.005 \mathrm{Bi}^{3+}$	11%	46%
$0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Sm}^{3+}, 0.01 \mathrm{Bi}^{3+}$	9%	56%
$0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Sm}^{3+}, 0.02 \mathrm{Bi}^{3+}$	4%	53%
$0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Sm}^{3+}, 0.03 \mathrm{Bi}^{3+}$	9%	51%

Figure S6. The quantum yield test charts of (A) LMBO: $0.4 \mathrm{~Tb}^{3+}$, (B) LMBO: $0.4 \mathrm{~Tb}^{3+}$, $0.005 \mathrm{Eu}^{3+}, 0.02 \mathrm{Bi}^{3+}$ and (C) LMBO: $0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Sm}^{3+}, 0.02 \mathrm{Bi}^{3+}$ phosphors.

The quantum yield was tested using an integrating sphere and calculated according to equation:

$$
Q Y=\frac{P_{c}}{L_{a}-L_{c}}
$$

where QY is the quantum yield, P_{c} is the count of emitted photons of the sample in the integrating sphere, L_{a} is the count of reflected photons of the excitation light in the integrating sphere with a blank background, and L_{c} is the count of reflected photons of the excitation light in the integrating sphere of the sample.

Figure S7. The photograph of green LED with $375 \sim 380 \mathrm{~nm}$ UV-LED and LMBO: $0.4 \mathrm{~Tb}^{3+}$ green phosphor combined.

Figure S8. (A) The photograph of yellow LED with $375 \sim 380 \mathrm{~nm}$ UV-LED and LMBO:
$0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Eu}^{3+}$ yellow phosphor combined; (B) The photograph of white LED with $375 \sim 380 \mathrm{~nm}$ UV-LED, LMBO: $0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Eu}^{3+}$ yellow phosphor and blue phosphor (BAM: Eu^{2+}) combined.

Figure S9. (A) The photograph of yellow LED with 375~380 nm UV-LED and LMBO: $0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Sm}^{3+}$ yellow phosphor combined; (B) The photograph of white LED with 375~380 nm UV-LED and LMBO: $0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Sm}^{3+}$ yellow phosphor and blue phosphor (BAM: Eu^{2+}) combined.

Figure S10. (A) The spectral power distribution of the white light LED combined with LMBO: $0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Eu}^{3+}$ yellow phosphor, BAM: Eu^{2+} blue phosphor and $375 \sim 380$ nm UV-LED; (B) The spectral power distribution of the white light LED combined with LMBO: $0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Sm}^{3+}$ yellow phosphor, BAM: Eu^{2+} blue phosphor and 375~380 nm UV-LED.

Figure S11. The spectral power distribution of the white LED combined with LMBO: Tb^{3+} green phosphor, red phosphor $\left(\mathrm{CaAlSiN}_{3}: \mathrm{Eu}^{2+}\right)$ and blue LED (Both voltage and current increase).

Table S4. The performance of white LED assembled by LMBO: $0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Eu}^{3+}$ yellow phosphor, BAM: Eu^{2+} blue phosphor and UV-LED.

Voltage (V)	Current (mA)	CRI	CCT (K)	luminescence efficiency $(\mathrm{lm} / \mathrm{W})$
3.14	60	44.4	25079	0.53
3.19	100	48.5	23233	0.55
3.23	140	49.5	26272	0.54
3.26	180	49.8	30336	0.52
3.3	220	50	38164	0.49
3.33	260	50.2	54940	0.47
3.36	300	50.2	94138	0.44

Table S5. The performance of white LED assembled by LMBO: $0.4 \mathrm{~Tb}^{3+}, 0.005 \mathrm{Sm}^{3+}$ yellow phosphor, BAM: Eu^{2+} blue phosphor and UV-LED.

Voltage (V)	Current (mA)	CRI	CCT (K)	luminescence efficiency $(\operatorname{lm} / \mathrm{W})$
3.18	60	88.6	9438	0.31
3.24	100	89.5	8960	0.31
3.29	140	88.7	9411	0.3
3.33	180	88.1	9773	0.29
3.37	220	87.3	10114	0.28
3.41	260	86.6	10469	0.26
3.45	300	86.3	10933	0.25

Table S6. The performance of white LED assembled by LMBO: $0.4 \mathrm{~Tb}^{3+}$ green phosphor, $\mathrm{CaAlSiN}_{3}: \mathrm{Eu}^{2+}$ red phosphor and blue-LED.

Voltage (V) Current (mA)	CRI	CCT (K)	luminescence efficiency $(\operatorname{lm} / \mathrm{W})$	
constant voltage mode				
5.65	60	33.9	4676	0.23
5.65	140	34.5	4642	0.1
5.65	220	35.8	4571	0.06
5.65	300	34.6	4601	0.05
variable voltage mode				
2.98	20	46.4	4203	15.69
3.55	60	47.5	4186	9.2
3.95	100	50.5	4300	6.52
4.31	140	55.9	4491	4.9
4.67	180	63	4704	3.73
5.19	220	72	4905	2.49
7.43	260	52.1	4527	0.57

