Supporting Information

Low-operating temperature ammonia sensor based on Cu₂O

nanoparticles decorated with p-type MoS₂ nanosheets

Yanqiao Ding^a, Xuezheng Guo^a, Bingsheng Du^a, Xiaofei Hu^a, Xi, Yang^b, Yong He^{*a}, Yong Zhou ^{* a} and Zhigang Zang^{* a}

^a Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing 400044, China

^b Institute of Chemical materials, China Academy of Engineering Physics, Mianyang 621900, China

* Corresponding author: Prof. Zhigang Zang, E-mail: <u>zangzg@cqu.edu.cn</u>; Prof. Yong He, E-mail: <u>yonghe@cqu.edu.cn</u>; Prof. Yong Zhou, E-mail: <u>zhyf@cqu.edu.cn</u>

Figure S1 The schematic of gas sensor device and measuring system.

Figure S2 XPS spectra of Cu 2p (a), Mo 3d (b) and S 2p (c) in M-5 nanohybrid.

Figure S3 Transient resistance and sensing response of pure MoS_2 to 100 ppm NH_3 at different operating temperatures.

Figure S4 Transient resistance in the dotted box to 100 ppm NH₃ at different operating temperatures (a) Cu₂O; (b) M-5 nanohybrid; (c) M-15 nanohybrid; (d) M-25 nanohybrid.

Figure S5 TGA analysis under air atmosphere with a heating rate of 10 °C/min (a) M-5; (b) MoS₂; (c) The XRD pattern of M-5 calcined at 350°C under air atmosphere for 30 min.

Figure S6 Response towards 100 ppm gas at 25°C (a) H₂S; (b) NO₂.