The supporting information

An enhanced fluorescent ZIF-8 film by capturing guest

molecules for light-emitting applications

Qiufen Liu^a, Shouqin Tian^{a,*}, Xiujian Zhao^a, Gopinathan Sankar^b

^a State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology

(WUT), No. 122, Luoshi Road, Wuhan 430070, P. R. China

^b Department of Chemistry, Materials Chemistry Centre, University College London, 20 Gordon

St., London WC1H 0AJ, UK

*Corresponding author. Tel.: +86-027-87652553; Fax: +86-027-87883743.

E-mail address: tiansq@whut.edu.cn (S. Tian)

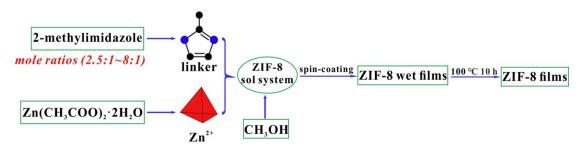


Figure S1. Experimental scheme for preparation of ZIF-8 films at different mole ratios of reactants.

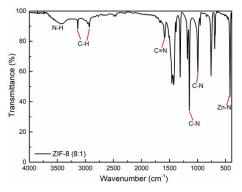


Figure S2. FTIR spectrum of the ZIF-8 film synthesized with the mole ratio of 8:1.

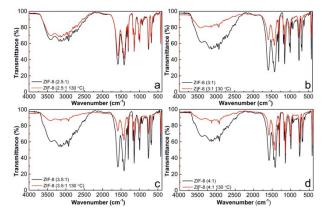


Figure S3. FTIR spectra of ZIF-8 films synthesized with low mole ratio before (black lines) and after (red lines) heat treatment.

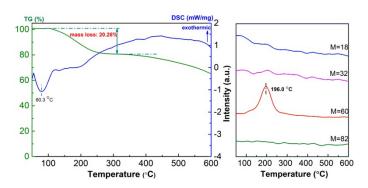


Figure S4. Thermo-gravimetric curve and traced guest molecules curves of the ZIF-8 film (2.5:1) in Ar.

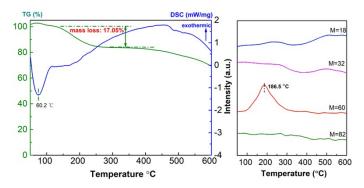


Figure S5. Thermo-gravimetric curve and traced guest molecules curves of the ZIF-8 film (3:1) in Ar.

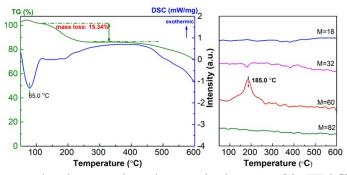


Figure S6. Thermo-gravimetric curve and traced guest molecules curves of the ZIF-8 film (3.5:1) in Ar.

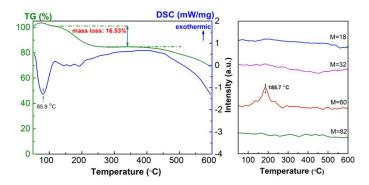


Figure S7. Thermo-gravimetric curve and traced guest molecules curves of the ZIF-8 film (4:1) in Ar.

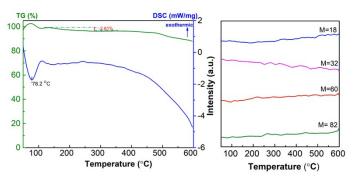


Figure S8. Thermo-gravimetric curve and traced guest molecules curves of the ZIF-8 film (5:1) in N₂.

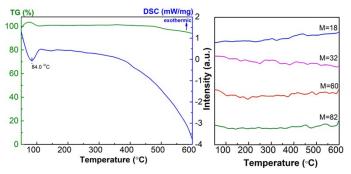


Figure S9. Thermo-gravimetric curve and traced guest molecules curves of the ZIF-8 film (6:1) in N₂.

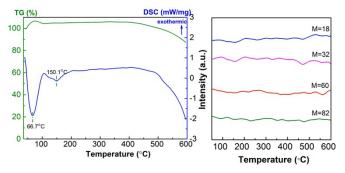


Figure S10. Thermo-gravimetric curve and traced guest molecules curves of the ZIF-8 film (8:1) in Ar.

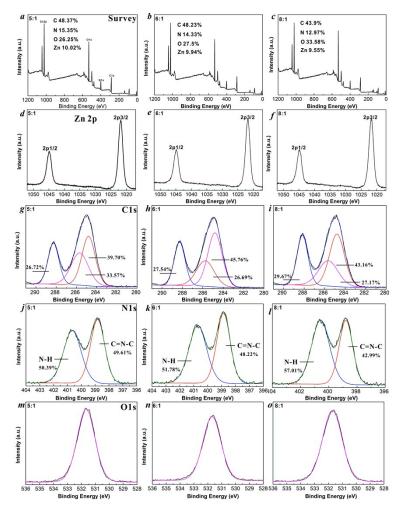


Figure S11. XPS survey spectra (a-c), high resolution Zn2p spectra (d-f), C1s spectra (g-i), N1s spectra (j-l) and O1s spectra (m-o) of ZIF-8 films synthesized with the mole ratio ratios of 5:1, 6:1 and 8:1.

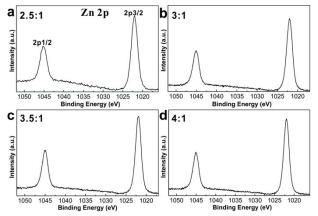


Figure S12. XPS high resolution Zn2p spectra of ZIF-8 films synthesized with different mole ratios, (a) 2.5:1, (b) 3:1, (c) 3.5:1 and (d) 4:1.

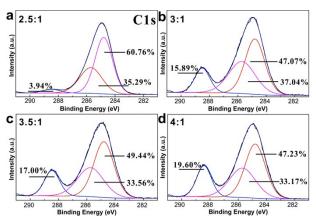


Figure S13. XPS high resolution C1s spectra of ZIF-8 films synthesized with different mole ratios, (a) 2.5:1, (b) 3:1, (c) 3.5:1 and (d) 4:1.

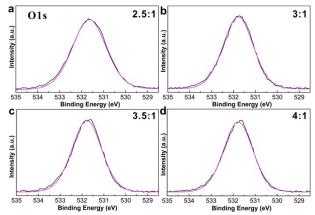


Figure S14. XPS high resolution O1s spectra of ZIF-8 films synthesized with different mole ratios, (a) 2.5:1, (b) 3:1, (c) 3.5:1 and (d) 4:1.

Figure S15. UV-vis absorption spectra of ZIF-8 films obtained through different mole ratios.

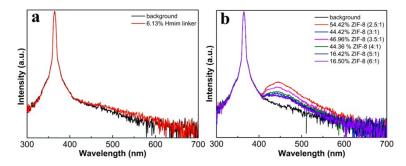


Figure S16. PLQY spectra of Hmim powders (a) and ZIF-8 films synthesized with different mole ratios (b). (λ_{ex} =365 nm)

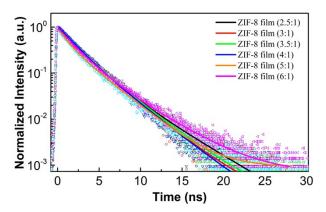


Figure S17. Fluorescence lifetime decay curves for ZIF-8 films synthesized with different mole ratios.

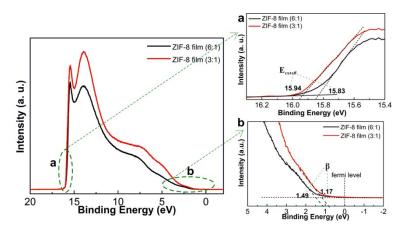


Figure S18. UPS patterns of ZIF-8 films synthesized with mole ratios of 6:1 and 3:1. (note: WF=hn-E_{cutoff}-E_F, HOMO=WF+ β , hn=21.2 eV, WF: work function, E_{cotoff}: low kinetic energy cutoff edge, E_F: fermi level.)

Wavenumber (cm ⁻¹)	The vibrations of the		The vibrations of the functional	
	functional groups	Wavenumber (cm ⁻¹)	groups	
~3134	C-H in the imidazole ring	~2927	C–H in methyl group	
~1585	C=N stretch modes	1350-1500	entire ring stretching	
900-1350	in-plane bending of the ring	~1146, ~995	C-N stretching	
below 800	out-of-plane bending of the	~421	Zn-N stretching	
	ring	121	Zh it stretening	

Table S1 The infrared absorption characteristic peaks of ZIF-8 samples synthesized with the mole ratios of 8:1.

 Table S2 Photoluminescence quantum yield ZIF-8 films synthesized with different mole ratios and Hmim powder using 365 nm excitation wavelength.

Mole ratio	PLQY (%)	Mole ratio	PLQY (%)			
8:1	4.03	3.5:1	46.96			
6:1	16.50	3:1	44.42			
5:1	16.42	2.5:1	54.42			
4:1	44.36	Hmim	6.13			

Table S3 Results of fitting parameters of the PL lifetime decay measured for the ZIF-8 films at different mole

ratios at 440 nm (λ_{ex} =365 nm).							
Samples (mole ratios)	τ_1/ns	A_1 / %	τ_2/ns	A_2 / %	τ_{avg}/ns		
2.5:1	2.1	82.12%	4.2	17.88%	2.74		
3:1	1.9	58.65%	3.2	41.35%	2.61		
3.5:1	1.9	61.02%	3.4	38.98%	2.70		
4:1	1.8	55.12%	3.2	44.88%	2.63		
5:1	1.1	44.68%	3.0	55.32%	2.57		
6:1	1.7	66.46%	3.8	33.54%	2.81		

note: $\tau_{avg=} \left(A_1 \times \tau_1^2 + A_2 \times \tau_2^2\right) / \left(A_1 \times \tau_1 + A_2 \times \tau_2\right)$