Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Light- and Magnetic-Responsive Synergy Controlled Reconfiguration of

Polymer Nanocomposites with Shape Memory Assisted Self-Healing

Performance for Soft Robotics

Yi Chen, Xing Zhao, Yan Li, Zhao-Yuan Jin, Yi Yang, Ming-Bo Yang, Bo Yin*

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials

Engineering, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China

*Corresponding author. Tel: +86-28-85405324; Fax: +86-28-85405324

E-mail address: <u>yinbo@scu.edu.cn</u>

Supplementary Figures:

Figure S1. Schematic diagrams of the fabrication process for PCL/TPU/Fe₃O₄@PDA nanocomposites.

Figure S2. The details of evolution of strain, stress, and temperature during the thermomechanical cycle of PCL/TPU blend.

Figure S3. (a) (b) SEM images of PCL/TPU/Fe₃O₄ nanocomposite for fracture morphology.

Figure S4. The snapshots of light-and magnetic- responsive controlled reconfiguration.

Figure S5. Measurement of bending angle of the nanocomposite film (length of the bending curved arc is 8mm).

Figure S6 The stress-strain curves of original, damaged and 1&3 healing cycles specimens.

Supplementary Table:

Magnetic-response			Light-response		
t/s	angle/°	curvature	t/s	angle/°	curvature
0	0	0	0	90	11.25
0.1	5	0.625	0.5	88	11
0.2	11	1.375	1	86	10.75
0.3	20	2.5	1.5	83	10.375
0.4	34	4.25	2	78	9.75
0.5	50	3.75	2.5	72	9
0.6	63	7.785	3	64	8
0.7	75	9.375	3.5	52	6.5
0.8	83	10.375	4	35	4.375
0.9	88	11	4.5	18	2.25
1.0	90	11.25	5	0	0

Table.S1 Data of bending angle and the relevant parameter of curvature.

The calculation process of curvature is shown as follows:

$$\frac{\Delta \alpha}{\Delta s}$$

where $\Delta \alpha$ is bending angle. In actual engineering design problems, a section of arc adjacent to the bending point is often used to approximate the curved arc to simplify the problem. Therefore, the Δs is length of bending arc, and the approximate value is 8 mm here.

Supplementary Videos:

Video. S1 Light-responsive shape recovery progress of the PCL/TPU/Fe₃O₄@PDA nanocomposite.

Video. S2 Light- and magnitic-responsive synergy controlled reconfiguration and reversible shape

transformation progress of the PCL/TPU/Fe₃O₄@PDA nanocomposite in a cantilever experiment.