Supporting Information

Light- and Magnetic-Responsive Synergy Controlled Reconfiguration of Polymer Nanocomposites with Shape Memory Assisted Self-Healing
 Performance for Soft Robotics

Yi Chen, Xing Zhao, Yan Li, Zhao-Yuan Jin, Yi Yang, Ming-Bo Yang, Bo Yin*

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials

Engineering, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
*Corresponding author. Tel: $+86-28-85405324$; Fax: $+86-28-85405324$

E-mail address: yinbo@scu.edu.cn

Supplementary Figures:

[^0]

Figure S2. The details of evolution of strain, stress, and temperature during the thermomechanical cycle of PCL/TPU blend.

Figure S3. (a) (b) SEM images of $\mathrm{PCL} / \mathrm{TPU} / \mathrm{Fe}_{3} \mathrm{O}_{4}$ nanocomposite for fracture morphology.

Figure S4. The snapshots of light-and magnetic- responsive controlled reconfiguration.

Figure S5. Measurement of bending angle of the nanocomposite film (length of the bending curved arc is 8 mm).

Figure S6 The stress-strain curves of original, damaged and $1 \& 3$ healing cycles specimens.

Supplementary Table:

Table.S1 Data of bending angle and the relevant parameter of curvature

Magnetic-response			Light-response		
t / s	angle/ ${ }^{\circ}$	curvature	t / s	angle/ ${ }^{\circ}$	curvature
0	0	0	0	90	11.25
0.1	5	0.625	0.5	88	11
0.2	11	1.375	1	86	10.75
0.3	20	2.5	1.5	83	10.375
0.4	34	4.25	2	78	9.75
0.5	50	3.75	2.5	72	9
0.6	63	7.785	3	64	8
0.7	75	9.375	3.5	52	6.5
0.8	83	10.375	4	35	4.375
0.9	88	11	4.5	18	2.25
1.0	90	11.25	5	0	0

The calculation process of curvature is shown as follows:

$$
\text { curvature }=\frac{\Delta \alpha}{\Delta s}
$$

where $\Delta \alpha$ is bending angle. In actual engineering design problems, a section of arc adjacent to the bending point is often used to approximate the curved arc to simplify the problem. Therefore, the $\Delta \mathrm{s}$ is length of bending arc, and the approximate value is 8 mm here.

Supplementary Videos:

Video. S1 Light-responsive shape recovery progress of the $\mathrm{PCL} / \mathrm{TPU} / \mathrm{Fe}_{3} \mathrm{O}_{4} @ \mathrm{PDA}$ nanocomposite.

Video. S2 Light- and magnitic-responsive synergy controlled reconfiguration and reversible shape transformation progress of the $\mathrm{PCL} / \mathrm{TPU} / \mathrm{Fe}_{3} \mathrm{O}_{4} @ \mathrm{PDA}$ nanocomposite in a cantilever experiment.

[^0]: Figure S 1 . Schematic diagrams of the fabrication process for $\mathrm{PCL} / \mathrm{TPU} / \mathrm{Fe}_{3} \mathrm{O}_{4} @ \mathrm{PDA}$ nanocomposites

