Combined Effects of Ion-Pairing on Multi-Emissive Properties of Benzimidazolium Salts

Gabriele Di Carlo,*^[a] Alessandra Forni,*^[b] Paola Moretti,^[a] Daniele Marinotto,^[b] Chiara Botta,^[c] Maddalena Pizzotti,^[a] Francesca Tessore^[a] and Elena Cariati^[a]

[a]	Prof. E. Cariati, Prof. F. Tessore, Prof. M. Pizzotti, Dr. G. Di Carlo and Mrs. P. Moretti
	Department of Chemistry
	University of Milan and INSTM Research Unit
	Via C. Golgi 19, 20133 Milan (Italy)
	E-mail: gabriele.dicarlo@unimi.it
[b]	Dr. A. Forni and Dr. D. Marinotto
	CNR-SCITEC, Istituto di Scienze e Tecnologie Chimiche "G. Natta"
	Via C. Golgi 19, 20133 Milan (Italy)
	E-mail: alessandra.forni@scitec.cnr.it
[c]	Dr. Chiara Botta
	CNR-SCITEC, Istituto di Scienze e Tecnologie Chimiche "G. Natta"
	Via A. Corti 12, 20133 MILANO (Italy)

Table of Contents

1	E	xperimental details							
	1.1	General information							
	1.2	Synthesis1							
	1.3	Single crystal X-ray crystallographic studies1							
	1.4	Computational details 2							
	1.5	Photophysical characterization 2							
2	Ν	IMR studies							
3	Р	Photophysical Studies							
	3.1	Solutions 6							
	3.2	Solids							
4	C	Crystal structures							
5	Т	heoretical studies							
6	R	References							

1 Experimental details

1.1 General information

All reagents and solvents involved in the synthesis were purchased from Sigma Aldrich and used as received, except THF (freshly distilled from Na/benzophenone under nitrogen atmosphere). Glassware has been flame-dried under vacuum before use when necessary. ¹*H*-NMR spectra were recorded on a Bruker Avance DRX-400 in DMSO- d_6 , CDCl₃ and CD₃OD as solvents at 10⁻³M (10⁻⁵M where shown). Elemental analysis was carried out with a Perkin-Elmer CHN 2400 instrument.

1.2 Synthesis

Triflate (**1-OTf**), nitrate (**1-NO**₃) and lodide (**1-I**) salts of 1,3-dimethyl-2-(4-methylphenyl)-1Hbenzimidazolium (**1**) are easily obtained by following the synthetic strategy previously reported by some of us.[S1] The high purity grade of the final products, required for photophysical measurements, are obtained by Biotage flash chromatography and multiple recrystallizations with proper solvents.

1-OTf crystals were obtained by repeated crystallization steps from ethanol at +4°C. Elemental analysis calcd (%) for $C_{17}H_{17}F_3N_2O_3S$: C 52.84, H 4.43, N 7.25; found C 52.71, H 4.43, N 7.24. MS-ESI (+) m/z: calcd (%) for $C_{16}H_{17}N_2^+$ 237, found 237 [M]⁺. MS-ESI (-) m/z: calcd (%) for CF₃O₃S⁻ 149, found 149 [M]⁻.

1-NO₃·0.5EtOH crystals were obtained by repeated crystallization steps from ethanol at +4°C. Elemental analysis calcd (%) for $C_{16}H_{17}N_3O_3$: C 63.34, H 6.25, N 13.04; found C 63.18, H 6.23, N 13.08. MS-ESI (+) m/z: calcd (%) for $C_{16}H_{17}N_2^+$ 237, found 237 [M]⁺. MS-ESI (-) m/z: calcd (%) for NO_3^- 62, found 62 [M]⁻.

1-NO₃·H₂O crystals were obtained by repeated crystallization steps from acetonitrile/water (9:1) solution at +4°C. Elemental analysis calcd (%) for $C_{16}H_{19}N_3O_4 \cdot [0.5C_2H_6O]$: C 60.56, H 6.03, N 13.24; found C 60.47, H 6.01, N 13.21. MS-ESI (+) m/z: calcd (%) for $C_{16}H_{17}N_2^+$ 237, found 237 [M]⁺. MS-ESI (-) m/z: calcd (%) for NO₃⁻ 62, found 62 [M]⁻.

1-I-0.5CH₂Cl₂ crystals were obtained by repeated crystallization steps from dichloromethane at +4°C. Elemental analysis calcd (%) for $C_{16}H_{17}IN_2$ ·[0.5CH₂Cl₂]: C 48.73, H 4.46, N 6.89; found C 48.87, H 4.46, N 6.90. MS-ESI (+) m/z: calcd (%) for $C_{16}H_{17}N_2^+$ 237, found 237 [M]⁺. MS-ESI (-) m/z: calcd (%) for I⁻ 127, found 127 [M]⁻.

1.3 Single crystal X-ray crystallographic studies

X-ray data of **1-OTf**, **1-NO**₃**·0.5EtOH**, **1-NO**₃**·H**₂**O** and **1-I·0.5CH**₂**Cl**₂ were collected on a Bruker Apex II diffractometer using MoK α radiation. The structures were solved using direct methods and refined using a full-matrix least squares procedure based on F² using all data [S2]. Hydrogen atoms were

placed at geometrically estimated positions. Details relating to the crystals and the structural refinements are presented in Table S2. Full details of crystal data and structure refinement, in CIF format, are available as Supplementary Information.

CCDC reference numbers: 2018732 (**1-OTf**), 2018733 (**1-NO₃·0.5EtOH**), 2018734 (**1-NO₃·H₂O**) and 2018735 (**1-I·0.5CH₂Cl₂**).

1.4 Computational details

DFT and TDDFT calculations have been performed in vacuo at the ω B97X/6-311++G(d,p) level of theory on both the 1,3-dimethyl-2-(4-methylphenyl)-1H-benzimidazolium cation **1** and its salts with OTf⁻, NO₃⁻ and I⁻ anions. The ω B97X [S3] functional was used owing to its ability in correctly treating at the same time not only ground and excited states properties, but also intermolecular interactions. In the case of the free cation, geometry was fully optimized starting from the X-ray one of **1-OTf**. As for the salts, the cation-anion pairs displaying the shortest intermolecular contacts in the corresponding X-ray structures have been extracted from the crystal and submitted to geometry optimization by constraining angles and torsions to the experimental values.

All calculations have been performed with the Gaussian 16 program (Revision A.03) [S4].

1.5 Photophysical characterization

Luminescence measurements. Steady state emission and excitation spectra and photoluminescence lifetimes were obtained using a FLS 980 spectrofluorimeter (Edinburgh Instrument Ltd). The steady state measurements were obtained by a 450 W Xenon arc lamp. Photoluminescence lifetime measurements were performed using: Edinburgh EPLED-300, (Edinburgh Instrument Ltd) and microsecond flash Xe-lamp (60W, 0.1÷100 Hz) with data acquisition devices time correlated single-photon counting (TCSPC) and multi-channel scaling (MCS) methods, respectively.

Photoluminescence quantum yields were measured using a C11347 Quantaurus – Absolute Photoluminescence Quantum Yield Spectrometer (Hamamatsu Photonics K.K), equipped with a 150 W Xenon lamp, an integrating sphere and a multichannel detector.

2 NMR studies

Figure S1: Integrated ¹*H*-NMR spectrum (up) of **1-I** (at 298K) in DMSO- d_6 . Stacked ¹*H*-NMR spectra (down) of **1-I** (red); **1-NO**₃ (blue); **1-OTf** (green).

Figure S2. Stacked ¹*H*-NMR spectra (at 298K) in CDCl₃ of **1-I** (red); **1-NO₃** (blue); **1-OTf** (green): 10^{-3} M up; 10^{-5} M down.

Figure S3. Stacked ¹H-NMR spectra (at 298K) in CD₃OD of 1-I (red); 1-NO₃ (blue); 1-OTf (green).

3 Photophysical Studies

3.1 Solutions

Figure S4. a) Absorption spectrum of diluted solutions (10^{-5} M) of **1**-salts in MeOH/EtOH. b) Absorption (solid line) and emission spectra (dotted line; exc 300 nm) at RT of diluted solutions (10^{-5} M) of **1**-salts in CHCl₃. c) Steady-state and time-delayed PL emission spectra of **1**-salts in CHCl₃ (delay time 0.2 ms and window 1.5 ms for **1-OTf** and **1-I**; delay time 0.1 ms and window 0.5 ms for **1-NO**₃).

Figure S5: Emission decay profiles of **1**-salts (excitation 300 nm) in MeOH/EtOH (1:4) diluted solution (10⁻⁵M) at 298K and 77K.

Figure S6: Emission decay profiles of **1**-salts (excitation 300 nm) in non-polar solvent (10⁻⁵M in CHCl₃) at 298K.

3.2 Solids

Figure S7. a) PL emission spectra of **1-OTf**, **1-NO₃·EtOH**, **1-NO₃·H₂O** and **1-I·CH₂Cl₂** crystals at 298K (300 nm excitation). b) PL emission spectra at 298K under 350 nm excitation. c) Fluorescence excitation spectra. d) Molecular Phosphorescence excitation spectra. e) Supramolecular Phosphorescence excitation spectra.

Figure S8. FL (350 nm), PH_M (410 nm) and PH_s (530 nm) decay profiles of **1-OTf** crystals (excitation 300 nm).

Figure S9. FL (350 nm), PH_M (415 nm) and PH_s (530 nm) decay profiles of **1-NO₃·EtOH** crystals (excitation 300 nm).

Figure S10. FL (350 nm), PH_M (415 nm) and PH_s (530 nm) decay profiles of $1-NO_3 \cdot H_2O$ crystals (excitation 300 nm).

Figure S11. FL (350 nm), PH_M (460 nm) and PH_s (530 nm) decay profiles of **1-I·CH₂Cl₂** crystals (excitation 300 nm).

		φ	τ (ns)	Kr(s⁻¹) ^a	Knr(s⁻¹) ^b	Kr/Knr
1-Otf MeOH/EtOH	Em350 (exc300)	0,775	0,94	8,24E+08	2,39E+08	3,45
1-Otf	Em350 (exc300)	0,507	0,89	5,69E+08	5,54E+08	1,03
crystal	Em410 (exc350)	0,347	2,3E+07	15,0870	28,3913	0,53
1-NO ₃ MeOH/EtOH	Em350 (exc300)	0,526	1,21	4,35E+08	3,92E+08	1,11
1-NO₃·EtOH	Em350 (exc300)	0,037	0,65	5,69E+07	1,48E+09	0,04
crystal	Em410 (exc350)	0,73	5,4E+06	135,1852	50,0000	2,70
1-NO₃·H₂O	Em350 (exc300)	0,019	0,42	4,52+07	2,34E+09	0,02
crystal	Em410 (exc350)	0,25	1,14E+07	21,8532	65,5594	0,33
<mark>1-I</mark> MeOH/EtOH	Em350 (exc300)	0,536	1,20	4,47E+08	3,87E+08	1,16
1-I·CH ₂ Cl ₂	Em350 (exc300)	0,114	0,45	2,53E+08	1,97E+09	0,13
crystal	Em410 (exc350)	0,237	6,15E+06	38,5366	124,0650	0,31

Table S1. Radiative (K_r) and non-radiative (K_{nr}) constants of **1**-salts.

 $a \mathbf{K}_{r} = \mathbf{\phi} \cdot \mathbf{\tau}^{-1}$

 b K_{nr} = K_r · (ϕ^{-1} - 1)

4 Crystal structures

	1-OTf	1-NO ₃ ·0.5EtOH	1-NO ₃ ·H ₂ O	$1-I\cdot0.5CH_2Cl_2$
Chemical Formula	C ₁₆ H ₁₇ N ₂ , CF ₃ O ₃ S	C ₁₆ H ₁₇ N ₂ , NO ₃ , 0.5(C ₂ H ₆ O)	C ₁₆ H ₁₇ N ₂ , NO ₃ , O	2(C ₁₆ H ₁₇ N ₂), 2I, CH ₂ Cl ₂
Molecular weight	386.38	322.36	315.32	813.36
<i>Т</i> (К)	293(2)	120(2)	293(2)	120(2)
Crystal system	Triclinic	Monoclinic	Triclinic	Monoclinic
space group	<i>P</i> -1	C2/c	<i>P</i> -1	C2/c
a(Å)	7.5128(5)	46.7400(18)	7.456(2)	17.3639(9)
b(Å)	8.6916(5)	7.5898(3)	9.299(3)	7.5370(4)
c(Å)	13.7154(8)	28.5740(11)	12.571(3)	26.8262(14)
α(°)	104.2767(9)	90	75.967(4)	90
β(°)	91.5096(9)	106.8120(10)	77.518(4)	105.8189(7)
γ(°)	91.7180(9)	90	70.952(4)	90
<i>V</i> (Å ³)	867.02(9)	9703.3(7)	790.3(4)	3377.8(3)
Z	2	24	2	4
D _{calcd} (g cm ⁻³)	1.480	1.324	1.325	1.599
μ (mm ⁻¹)	0.237	0.094	0.097	2.048
Crystal size (mm)	0.55 x 0.17 x 0.03	0.32 x 0.33 x 0.22	0.15 x 0.12 x 0.12	0.42 x 0.27 x 0.12
2θmax, °	61.04	61.03	61.13	61.02
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	19531 / 5294 / 3976	88189 / 14792 / 10977	′ 14379 / 4815 / 2538	31951 / 5159 / 4935
$(R_{int})/(R_{\sigma})$	0.0202 / 0.0190	0.0341 / 0.0267	0.0322 / 0.0404	0.0140 / 0.0093
data/restraints/params	5294 / 0 / 238	14792 / 78 / 690	4811 / 0 / 211	5159 / 0 / 201
$R[F^2 > 2\sigma(F^2)], wR(F^2)$	0.0695, 0.1278	0.0503, 0.1503	0.0723, 0.2593	0.0187, 0.0482
S	1.055	1.035	1.025	1.067
Δρmax, Δρmin (e Å ⁻³)	0.225, -0.355	0.417, -0.243	0.293, -0.432	0.913, -0.627

Table S2. Crystallographic data and structure refinement details for 1-OTf, 1-NO₃·0.5EtOH, 1-NO₃·H₂O and 1-I·0.5CH₂Cl₂

Figure S12. Fragments of crystal packing of (a) **1-NO₃·H₂O**, (b) **1-I·0.5CH₂Cl₂** and (c) **1-NO₃·0.5EtOH** with contacts shorter than the sum of van der Waals radii (cyan dashed lines) and distances between benzimidazole centroids (green circles). Ellipsoids at 30% (**1-NO₃·H₂O**) and 50% (**1-I·0.5CH₂Cl₂** and **1-NO₃·0.5EtOH**) probability.

Figure S13. Shortest distances between cation and anion (blue and red circles, respectively) centroids in the crystal structures of (a) **1-OTf**, (b) **1-NO₃·H₂O**, (c) **1-I·0.5CH₂Cl₂** and (d) **1-NO₃·0.5EtOH**.

5 Theoretical studies

Comparison between the optimized geometry of **1** in gas phase with the X-ray ones of the **1-OTf**, **1-NO₃·0.5EtOH**, **1-NO₃·H₂O** and **1-I·0.5CH₂Cl₂** salts indicates that crystal packing does not perturb significantly the molecular conformation, which can be then supposed to be preserved also in solution. The optimized structure of **1** is in fact only slightly more twisted with respect to that found in the crystal structures, as indicated by the dihedral angle θ between the l.s. planes through the benzimidazole moiety and the phenyl atoms. This angle measures in fact 59.92° in the optimized structure of **1** and 52.35° in the crystal structure of **1-OTf**, 48.23, 53.21 and 49.71° in the three independent molecules of **1-NO₃·0.5EtOH**, 53.09° in **1-NO₃·H₂O** and 48.33° in **1-I·0.5CH₂Cl₂**. Moreover, the distance of the C9–C10 bond connecting the two aromatic moieties is comparable in all cases, varying from 1.462 to 1.469 Å, suggesting a similar conjugation degree in the isolated cation and in the salts.

The simulated absorption spectrum of **1** is reported in Figure S14 (see Table S3 for the first singlet and triplet excitation energies). The overall shape of the spectrum reproduces the experimental one in MeOH/EtOH (displaying three bands at 210, 240 and 280 nm), though the computed maxima (at 190, 220, 245 nm) are slightly shifted towards higher energies.

Figure S14. $(\alpha)B97X/6-311++G(d,p)$ computed absorption spectrum of **1**, resulting from convolution of the excitation energies (blue sticks) with 0.15 eV of half-bandwidth

The S₀ \rightarrow S₁ excitation, computed at 245 nm with oscillator strength *f*=0.60, is mainly (75%) a HOMO \rightarrow LUMO transition where both HOMO and LUMO are π orbitals delocalized on the whole molecule (see Figure S15).

Figure S15. Plot of ω B97X/6-311++G(d,p) HOMO (left) and LUMO (right) of the optimized geometry of **1** with an isosurface value of 0.02.

Analysis of the first singlet and triplet excitation energies (see Table S3) reveals the presence of a triplet state (T₇) of (π , π^*) character just below S₁ (Δ E=0.162 eV, 8 nm). Such small S-T energy gap could allow an otherwise forbidden ISC from the singlet to the close triplet state which decays to T₁ by internal conversion, explaining the fluorescent (from S₁) and phosphorescent (from T₁) emission of solutions of **1**-salts, the latter observed only at low temperature, as usually happen for typical organic molecules. The (π , π^*) character of the emission from T₁ to S₀ explains its long lifetimes in solution.

Calculations of the excitation energies on the **1-OTf**, **1-NO**₃ and **1-I** ionic pairs to simulate any effect of the counterion on the emissive properties of **1** (see Table S4 for **1-OTf**) provide the first significantly populated (i.e. with f>0.1) singlet excited state slightly shifted towards lower energies (248, 249 and 253 nm for **1-OTf**, **1-NO**₃ and **1-I**, respectively) with respect to **1**. Moreover, they display CT character from the anion towards **1** as exemplified in Figure S16 for **1-OTf**, where we plot the MOs mainly involved (66%) in the S₀ \rightarrow S₁ transition.

Figure S16. Plot of \oplus B97X/6-311++G(d,p) occupied (left) and unoccupied (right) MOs mainly involved in the S₀ \rightarrow S₁ transition of the **1-OTf** pair (isosurface value 0.02).

Optimization of S_1 of **1** (see Figure S17 for the simulated spectrum of fluorescence) leads to a more planar conformation with respect to the ground state one (the dihedral angle θ measures 27.77°),

indicating a larger conjugation within the molecule. In fact, the C–C bond connecting the phenyl ring with benzimidazole shortens from 1.469 (ground state) to 1.402 Å (excited state). The fluorescence is computed at 312 nm with high oscillator strength (f=0.88), in agreement with the high quantum yields measured in solution. The computed Stokes shift (about 70 nm) is comparable with the experimental one.

Figure S17. (0.000) B97X/6-311++G(d,p) fluorescence spectrum of **1**, resulting from convolution of the excitation energies (blue sticks) with 0.2 eV of half-bandwidth

Table S3. First TD- ω B97X/6-311++G(d,p) S₀ \rightarrow S_n and S₀ \rightarrow T_n transitions computed on the optimized structure of **1**.

Excitation energies and oscillator strengths:

Τ1	Excited State 60 -> 64 60 -> 66 61 -> 65 61 -> 68 63 -> 64 63 -> 66	1:	Triplet-A 0.15339 -0.25298 -0.34304 0.10297 0.39109 -0.27116	3.4468 eV	7 359.7	1 nm	f=nd	<s**2>=2.00</s**2>	0
Т2	Excited State 60 -> 68 62 -> 64 62 -> 66 62 -> 70 63 -> 68	2:	Triplet-A -0.19525 0.49892 0.30488 -0.15923 0.19852	3.4953 eV	354.7	2 nm	f=nd	<s**2>=2.00</s**2>	0
Т3	Excited State 60 -> 64 60 -> 66 61 -> 65 63 -> 64 63 -> 66	3:	Triplet-A -0.41311 -0.11005 0.15395 0.44410 0.23257	4.1221 eV	300.7	8 nm	f=nd	<s**2>=2.00</s**2>	0
Т4	Excited State 61 -> 64 61 -> 65 61 -> 66 63 -> 65	4:	Triplet-A 0.49800 0.11791 -0.42177 -0.10443	4.6260 eV	268.0	2 nm	f=nd	<s**2>=2.00</s**2>	0
Т5	Excited State 60 -> 64 60 -> 66 61 -> 65 61 -> 66 61 -> 67 61 -> 68 63 -> 64	5:	Triplet-A 0.27244 -0.10889 0.49220 0.13411 -0.12576 -0.13926 0.16111	4.6665 eV	265.6	9 rım	f=nd	<s**2>=2.00</s**2>	0

	63 -> 66		-0.24527	
Τ6	Excited State 59 -> 64 60 -> 68 62 -> 64 63 -> 65 63 -> 68	6:	Triplet-A -0.12739 -0.37481 -0.31472 0.20280 0.38059	4.8634 eV 254.93 nm f=nd <s**2>=2.000</s**2>
Τ7	Excited State 60 -> 65 60 -> 67 63 -> 65 63 -> 66 63 -> 67 63 -> 68	7:	Triplet-A 0.39016 -0.10349 0.46239 0.11803 -0.10697 -0.21121	4.9040 eV 252.83 nm f=nd <s**2>=2.000</s**2>
S1	Excited State 60 -> 64 60 -> 66 62 -> 68 63 -> 64	8:	Singlet-A -0.15113 -0.18343 -0.20813 0.60912	5.0626 eV 244.90 nm f=0.4991 <s**2>=0.000</s**2>
Τ8	Excited State 52 -> 64 56 -> 64 60 -> 66 60 -> 70 62 -> 65 62 -> 68 63 -> 70 63 -> 72	9:	Triplet-A -0.10065 0.13488 -0.15474 0.10211 0.15934 0.54527 -0.15433 -0.15996	5.1996 eV 238.45 nm f=nd <s**2>=2.000</s**2>
S2	Excited State 60 -> 65 61 -> 64 61 -> 66 62 -> 64 63 -> 65	10:	Singlet-A 0.22786 0.41767 -0.31319 0.11152 0.33352	5.3058 eV 233.68 nm f=0.0056 <s**2>=0.000</s**2>
Τ9	Excited State 59 -> 64 59 -> 72 60 -> 68 62 -> 64 62 -> 64 62 -> 70 62 -> 70 62 -> 72 63 -> 68	11:	Triplet-A 0.39323 0.12080 -0.15316 0.14717 -0.21286 0.28531 0.26152 0.16861	5.3487 eV 231.80 nm f=nd <s**2>=2.000</s**2>
S3	Excited State 60 -> 68 61 -> 64 62 -> 64 62 -> 66 63 -> 68	12:	Singlet-A -0.14616 -0.11434 0.60870 0.19538 0.18833	5.5616 eV 222.93 nm f=0.0891 <s**2>=0.000</s**2>
S4	Excited State 60 -> 64 61 -> 65 62 -> 68 63 -> 64 63 -> 66	13:	Singlet-A 0.45845 -0.16526 0.26787 0.23038 -0.29816	5.6397 eV 219.84 nm f=0.1584 <s**2>=0.000</s**2>
Т1() Excited State 56 -> 64 60 -> 66 60 -> 70	e 14	: Triplet-A -0.15832 0.25802 -0.16405	5.7372 eV 216.10 nm f=nd <s**2>=2.000</s**2>

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2 -0.14077 5 0.10545 3 0.34632 5 -0.12914 0 0.27116 2 0.26967				
T11 Excited St 52 -> 64 54 -> 64 60 -> 64 60 -> 70 60 -> 70 63 -> 64 63 -> 66 63 -> 72	tate 15: Triplet-A 4 -0.10051 4 -0.11880 4 0.38809 5 0.13123 0 0.18612 2 0.22924 4 0.21992 5 0.30751 2 0.12214	6.2422	eV 198.62	nm f=nd	<s**2>=2.000</s**2>
S5 Excited Sta 60 -> 66 61 -> 65 61 -> 65 62 -> 65 62 -> 65 63 -> 66 63 -> 70 63 -> 72	te 16: Singlet-A 5 0.21409 5 0.40050 5 0.10021 8 -0.13969 5 0.14969 8 0.25670 4 0.16511 5 0.13415 5 0.19251 2 0.20386	6.4326 eV	192.74 nm	f=0.4893	<s**2>=0.000</s**2>
S6 Excited Sta 60 -> 65 61 -> 64 61 -> 72 63 -> 65	te 17: Singlet-A -0.22664 0.49325 0.10685 -0.37331	6.4929 eV	190.95 nm	f=0.1580	<s**2>=0.000</s**2>

Table S4 First TD- ω B97X/6-311++G(d,p) S₀ \rightarrow S_n and S₀ \rightarrow T_n transitions computed on 1-OTf. Excitation energies and oscillator strengths:

Excited 91 91 92 92 92 95 95 95 96 96	State ->101 ->103 ->104 ->101 ->102 ->103 ->101 ->104 ->101 ->104	1:	Triplet-A 0.18923 -0.11590 0.21650 -0.10335 0.25056 -0.14444 0.20504 -0.13334 0.34206 0.10388 -0.23870	3.3598 eV	369.03 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 91 92 95 95 96 96 96 97	State ->101 ->102 ->101 ->104 ->101 ->107 ->109 ->104	2:	Triplet-A -0.16279 -0.15525 0.37136 -0.29652 -0.18054 -0.12768 0.14614 0.14081	3.4663 eV	357.68 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 91 92	State ->101 ->101	3:	Triplet-A -0.25963 0.13106	4.1181 eV	301.07 nm	f=0.0000	<s**2>=2.000</s**2>

92 92 96 96 97	->102 ->103 ->101 ->104 ->101		-0.16702 0.12427 0.43211 -0.27971 -0.15112				
Excited 91 92 92 92 92 96	State ->101 ->104 ->101 ->102 ->104 ->102	4:	Triplet-A 0.24954 0.13938 0.50215 -0.10276 0.28730 0.10285	4.6335 eV	267.58 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 91 92 92 92 92 96	State ->101 ->102 ->101 ->102 ->103 ->104	5:	Triplet-A -0.28886 0.17968 0.16817 0.39104 -0.28926 -0.20212	4.6867 eV	264.55 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 90 91 95 96 96 97 97	State ->101 ->107 ->109 ->101 ->107 ->109 ->101 ->109	6:	Triplet-A -0.20242 0.13125 -0.15502 -0.28257 -0.28882 0.31760 0.15729 -0.10634	4.8200 eV	257.23 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 91 92 92 92 96 96 97	State ->102 ->103 ->101 ->102 ->103 ->102 ->103 ->102	7:	Triplet-A 0.38391 -0.25085 -0.15871 -0.12954 0.11624 0.33145 -0.21979 -0.15172	4.9264 eV	251.67 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 91 95 95 96 96 97	State ->104 ->107 ->109 ->101 ->104 ->101	8:	Singlet-A 0.13640 0.12286 -0.13674 0.57351 -0.13447 -0.24825	4.9947 eV	248.23 nm	f=0.5335	<s**2>=0.000</s**2>
Excited 90 91 95 95 95 96 96	State ->101 ->104 ->107 ->109 ->107 ->112 ->109	9:	Triplet-A 0.14673 -0.12585 0.11175 0.28948 -0.37317 -0.14834 -0.10977 0.12138	5.1455 eV	240.96 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 90 91 95 95 95 95	State ->101 ->107 ->109 ->104 ->107 ->109 ->112	10:	Triplet-A -0.28695 -0.10702 0.12231 -0.16262 0.22798 -0.13795 0.15429	5.2224 eV	237.41 nm	f=0.0000	<s**2>=2.000</s**2>

95 ->11: 96 ->10 96 ->10 97 ->10 97 ->10	5 7 9 7 9	0.12239 0.16035 -0.20407 -0.14795 0.12313				
Excited State 91 ->103 91 ->103 92 ->103 92 ->100 92 ->100 92 ->100 95 ->100 96 ->100 97 ->103	e 11: 1 2 3 1 3 4 4 1 2 2 3 2	Singlet-A 0.18917 -0.24992 0.13838 0.40203 -0.11941 0.21532 0.14426 -0.24085 0.14760 0.10747	5.2872 eV	234.50 nm	f=0.0116	<s**2>=0.000</s**2>
Excited State 92 ->10 95 ->10 95 ->10 97 ->10 100 ->10 100 ->10	e 12: 1 4 1 1 4	Singlet-A 0.12175 -0.27256 0.11105 0.13443 0.56197 -0.10044	5.3336 eV	232.46 nm	f=0.0416	<s**2>=0.000</s**2>
Excited State 100 ->100 100 ->100	e 13: 1 4	Triplet-A 0.68068 -0.11702	5.3626 eV	231.20 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 95 ->10 95 ->10 96 ->10 97 ->10 100 ->10	e 14: 1 4 7 1 1	Singlet-A 0.42179 -0.16085 -0.10879 -0.25257 0.37729	5.4302 eV	228.32 nm	f=0.0797	<s**2>=0.000</s**2>
Excited State 85 ->10 89 ->10 91 ->10 95 ->10 96 ->10 96 ->11 96 ->11 96 ->11 96 ->11 96 ->11 97 ->10	e 15: 1 4 7 9 4 0 1 2 3 5 7	Triplet-A 0.11636 -0.10825 -0.18058 -0.19252 0.23531 0.20251 0.12956 0.11517 -0.23044 -0.10914 -0.19685 0.10210	5.7032 eV	217.39 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 91 ->103 92 ->103 95 ->103 95 ->103 95 ->103 95 ->103 96 ->103 96 ->103 96 ->103 97 ->103	e 16: 1 2 1 7 9 1 4 4	Singlet-A 0.40411 -0.18264 0.14325 -0.13069 -0.19139 0.19657 0.15443 0.26338 -0.12323	5.7124 eV	217.04 nm	f=0.1683	<s**2>=0.000</s**2>
Excited State 90 ->10 94 ->10 95 ->10 95 ->10 96 ->10	e 17: 1 1 4 1	Singlet-A -0.12010 0.10390 0.22555 -0.12553 0.23960	6.3707 eV	194.62 nm	f=0.0194	<s**2>=0.000</s**2>

97 99	->101 ->101		0.49976 -0.20762				
Excited 94 95 96 97 97 99	State ->101 ->101 ->101 ->101 ->104 ->101	18:	Triplet-A 0.10482 0.26622 0.19064 0.49743 -0.14031 -0.26866	6.4082 eV	193.48 nm	f=0.0000	<s**2>=2.000</s**2>
Excited 91 92 92 92 95 95 96 96 96 97	State ->101 ->104 ->102 ->103 ->107 ->109 ->101 ->112 ->115 ->101	19:	Singlet-A 0.20984 0.14154 -0.15968 0.32037 -0.17073 0.21107 -0.22290 -0.15398 0.13113 0.11423 0.11547	6.4092 eV	193.45 nm	f=0.5239	<s**2>=0.000</s**2>
Excited 91 91 92 96 96 97 99	State ->101 ->102 ->103 ->101 ->102 ->103 ->102 ->101	20:	Singlet-A 0.18572 0.19210 -0.14440 0.31872 0.26413 -0.12187 -0.14547 0.39506	6.5707 eV	188.69 nm	f=0.1430	<s**2>=0.000</s**2>

6 References

- S1 Riera-Galindo, S.; Orbelli Biroli, A.; Forni, A.; Puttisong, Y.; Tessore, F.; Pizzotti, M.; Pavlopoulou, E.; Solano, E.; Wang, S.; Wang, G.; et al. Impact of Singly Occupied Molecular Orbital Energy on the N-Doping Efficiency of Benzimidazole Derivatives. ACS Appl. Mater. Interfaces 2019, 11 (41), 37981–37990.
- S2 G. M. Sheldrick, *Acta Crystallogr. C Struct. Chem.* 2015, **71**, 3.
- S3 J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 2008, **128**, 084106.
- Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.