Supporting Information for

Strain effects on stability, electronic and optical properties of two-

dimensional C_4X_2 (X = F, Cl, Br)

Huabing Shu^{*}

School of Science, Jiangsu University of Science and Technology, Zhenjiang 212001, China

*E-mail: <u>shuhuabing@just.edu.cn</u>

Table S1 Lattice constant a/b, in-plane C-C bond length $l_{C-C}(in)$, interlay C-C bond length $l_{C-C}(out)$, bucking height Δ and C-C-C bond angle of buckled graphene layer in the C₄X₂ (X = F, Cl, Br). The E_B is the binding energies of the C₄X₂. Length and energy units are in Å and eV/atom, respectively.

Name	a/b	$l_{\text{C-C}}(\text{in})$	$l_{C-C}(out)$	$l_{\text{C-X}}$	Δ	θ	$E_{\rm B}$
C_4F_2	2.560	1.561	1.547	1.369	0.503	110.126°	6.672
	2.561 ^[1]	1.553 ^[1]	1.553 ^[1]	1.378[1]	0.503 ^[1]		
	2.552 ^[2]	1.538 ^[2]	1.556 ^[2]	1.361 ^[2]	0.499 ^[2]		
C_4Cl_2	2.760	1.672	1.531	1.750	0.505	111.208°	5.482
C ₄ Br ₂	2.870	1.731	1.521	1.928	0.500	112.000°	4.966

Table S2 Average valence electrons of each C and X atoms for the C_4X_2 (X = F, Cl, Br), calculated by Bader analysis.

Name	$C_1(e)$	$C_2(e)$	$X_1(e)$	$C_{3}(e)$	$X_2(e)$	$C_4(e)$
C_4F_2	4.033	3.256	7.799	3.256	7.799	3.856
C_4Cl_2	4.089	3.884	7.119	3.844	7.119	3.903
C_4Br_2	4.039	4.093	6.964	4.093	6.964	3.846

Fig. S1 Convergence of quasi-particle bandgaps with respect to the size of number of occupied bands (a), *k*-point grid sampling of Brillouin zone (b), energy cutoff (c), and a box-shaped truncation (d) for the C_4F_2 and C_4Cl_2 , respectively. The arrows denote the adopted parameters in G_0W_0 and BSE calculations.

Fig. S2 Optimized geometries of the bilayer graphene (a) and silicene (b).

Fig. S3 Band structures of the C_4X_2 at the PBE level: (a) C_4F_2 , (b) C_4Cl_2 , (c) C_4Br_2 .

Fig. S4 Total and partial density of states of the C_4F_2 . "C_fluorinated" shows the fluorinated C atoms.

Fig. S5 Total and partial density of states of the C_4Cl_2 . "C_chlorinated" shows the chlorinated C atoms.

Fig. S6 Total and partial density of states of the C₄Br₂. "C_brominated" shows the brominated C atoms.

Fig. S7 Partial charge density of CB-1 and CB-2 at Γ -point for the C₄F₂ at tensile strains of 8% and 12%. Isovalue of $9 \times 10^{-3} \text{ e/Å}^3$ is adopted.

Fig. S8 (a)–(f) Variable quasi-particle band structures of the C₄Cl₂ under different biaxial strains ($\delta = -4\%$, 0, +0.3%, +2%, +5%, +8%).

References

- 1 L. Yuan, Z. Li, J. Yang and J. G. Hou, *Phys. Chem. Chem. Phys.*, 2012, **14**, 8179–8184.
- 2 C.-H. Hu, P. Zhang, H.-Y. Liu, S.-Q. Wu, Y. Yang and Z.-Z. Zhu, *J. Phys. Chem. C*, 2013, **117**, 3572–3579.